South Florida Water Management District
Concept for Deep Injection Wells in the Northern Everglades

Robert Verrastro, Lead Hydrogeologist – Water Supply Bureau
Cal Neidrauer, P.E. Chief Engineer – Hydrology and Hydraulics Bureau

Water Resources Advisory Commission
October 5, 2017
Meaningful stakeholder input has been discussed at WRAC and project team meetings.

South Florida Water Management District (SFWMD) draft concept.

Analyses to protect estuaries with Deep Injection Wells.

Draft implementation timeline and cost:
- Needs further development.
Deep Injection Wells - SFWMD Concept to Reduce Estuary Discharges

- June 2007: DIW Feasibility Study
- February 2008: SFWMD/FDEP/FDACS Lake Okeechobee Watershed Project Phase II Technical Plan
- 2013 CERP ASR Regional Study model analysis of DIWs with ASR wells
- May 2017: USACE remove DIW from Lake Okeechobee Watershed Restoration Project
- June 1, 2017: Discussion at Water Resources Advisory Commission
- June 6, 2017: Governing Board directed staff to evaluate feasibility of a DIW program
- October 12, 2017: Staff to present to Governing Board
Deep Injection Wells - SFWMD Concept to Reduce Estuary Discharges

- DIW could work in combination with reservoirs, ASR, and STAs
- Long term tool to help meet estuary restoration goals
- Would be used when discharges to tide become necessary

Deep Injection Well at Delray Beach South Central Facility
SFWMD Concept for Deep Injection Wells in the Northern Everglades Benefit Analysis

Cal Neidrauer, P.E. – Chief Engineer – Hydrology and Hydraulics Bureau
Goals and Methods

- Analyses performed to evaluate current and future improvements when implementing DIWs
 - 50 wells at 15 million gallons per day each were assumed for demonstration purposes
 1. “Recent Historical” scenario focused on evaluation of recent historical discharge events assuming only existing infrastructure
 2. “Future” scenario explored the synergy of adding DIWs to other planned restoration efforts including the Central Everglades Planning Project, Lake Okeechobee Watershed Project, C-43 Reservoir, C-44 Reservoir/Stormwater Treatment Area and other anticipated projects

- In these analyses, DIWs were only operated as an alternative discharge point in place of making flood control discharges to the Northern Estuaries (i.e., no impact to available water for restoration, or water supply. The only reduction is to flow already lost to tide)
Analysis of Recent Historical Conditions with 50 DIWs

Annual Volume of Lake Discharge to St. Lucie Estuary

- **Observed (No Deep Injection Wells)**
- **With 50 Deep Injection Wells (15 MGD Each)**

Percentages Represent the Estimated Reduction in Yearly Lake Discharge

Note: For 2016, the duration of the Lake-Caused Event would be reduced from 4 months to 1 month.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>241</td>
<td>70%</td>
<td>13</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>70</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2010</td>
<td>242</td>
<td>83%</td>
<td>73</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2013</td>
<td>411</td>
<td>41%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>107</td>
<td>100%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>10</td>
<td>91%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>669</td>
<td>51%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>326</td>
<td>88%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analysis of Recent Historical Conditions with 50 DIWs

- **Lake Discharge, S308reg (kaf)**
- **Percentages Represent the Estimated Reduction in Yearly Lake Discharge**

Note: For 2016, the duration of the Lake-Caused Event would be reduced from 4 months to 1 month.
Analysis of Recent Historical Conditions with 50 DIWs

Annual Volume of Lake Discharge to Caloosahatchee Estuary

- **Observed (No Deep Injection Wells)**
- **With 50 Deep Injection Wells (15 MGD Each)**

Percentages Represent the Estimated Reduction in Yearly Lake Discharge

<table>
<thead>
<tr>
<th>Year</th>
<th>Observed</th>
<th>Deep Injection Wells</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>145 kaf</td>
<td>106 kaf</td>
</tr>
<tr>
<td>2010</td>
<td>530 kaf</td>
<td>41 kaf</td>
</tr>
<tr>
<td>2011</td>
<td>530 kaf</td>
<td>32 kaf</td>
</tr>
<tr>
<td>2012</td>
<td>404 kaf</td>
<td>293 kaf</td>
</tr>
<tr>
<td>2013</td>
<td>1,249 kaf</td>
<td>1,016 kaf</td>
</tr>
<tr>
<td>2014</td>
<td>381 kaf</td>
<td>205 kaf</td>
</tr>
<tr>
<td>2015</td>
<td>361 kaf</td>
<td>361 kaf</td>
</tr>
<tr>
<td>2016</td>
<td>1,740 kaf</td>
<td>1,477 kaf</td>
</tr>
<tr>
<td>2017</td>
<td>159 kaf</td>
<td>107 kaf</td>
</tr>
</tbody>
</table>

Note: For 2016, the duration of the Lake-Caused Event would be reduced from 7 months to 5 months.

Analysis of Recent Historical Conditions with 50 DIWs

Annual Volume of Lake Discharge to Caloosahatchee Estuary

- **Observed (No Deep Injection Wells)**
- **With 50 Deep Injection Wells (15 MGD Each)**

Percentages Represent the Estimated Reduction in Yearly Lake Discharge

<table>
<thead>
<tr>
<th>Year</th>
<th>Observed</th>
<th>Deep Injection Wells</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>145 kaf</td>
<td>106 kaf</td>
</tr>
<tr>
<td>2010</td>
<td>530 kaf</td>
<td>41 kaf</td>
</tr>
<tr>
<td>2011</td>
<td>530 kaf</td>
<td>32 kaf</td>
</tr>
<tr>
<td>2012</td>
<td>404 kaf</td>
<td>293 kaf</td>
</tr>
<tr>
<td>2013</td>
<td>1,249 kaf</td>
<td>1,016 kaf</td>
</tr>
<tr>
<td>2014</td>
<td>381 kaf</td>
<td>205 kaf</td>
</tr>
<tr>
<td>2015</td>
<td>361 kaf</td>
<td>361 kaf</td>
</tr>
<tr>
<td>2016</td>
<td>1,740 kaf</td>
<td>1,477 kaf</td>
</tr>
<tr>
<td>2017</td>
<td>159 kaf</td>
<td>107 kaf</td>
</tr>
</tbody>
</table>

Note: For 2016, the duration of the Lake-Caused Event would be reduced from 7 months to 5 months.
Analysis of Recent Historical Conditions with 50 DIWs

Annual Volume of Lake Discharge to Caloosahatchee Estuary

- Observed (No Deep Injection Wells)
- With 50 Deep Injection Wells (15 MGD Each)
- With 50 Deep Injection Wells (15 MGD Each) + C43 Reservoir

Percentages Represent the Estimated Reduction in Yearly Lake Discharge

Note: For 2016, the duration of the Lake-Caused Event would be reduced from 7 months to 4 months

Lake Discharge, S77reg (kaf)

- 2009: 145 (65%), 106 (51)
- 2010: 530 (61%), 418 (37)
- 2011: 41 (46%), 32 (217)
- 2012: 293 (46%), 217 (61)
- 2013: 1,249 (31%), 865 (67)
- 2014: 381 (67%), 205 (125)
- 2015: 584 (53%), 361 (125)
- 2016: 1,740 (24%), 1,477 (74)
- 2017: 159 (107), 42 (272)
Analysis of Future Conditions with 50 Deep Injection Wells

- Including the Central Everglades Planning Project, Lake Okeechobee Watershed Restoration Project, C-43 Reservoir, C-44 Reservoir/STA and other anticipated projects

- Simulation of Future conditions indicate the DIW could operate in a complementary manner with other restoration projects
 - Even with all CERP components, northern estuary discharges are not fully eliminated; so DIW would still have opportunity to improve performance

- Restoration flows south are unaffected by DIW operations
Analysis of Future Conditions with 50 DIWs using RSM-BN Simulation Results (1965-2005 rainfall conditions)

<table>
<thead>
<tr>
<th>Simulation</th>
<th>Average Annual Lake O Regulatory Discharge (kac-ft)</th>
<th>% Estuary Regulatory Flow Reduction (relative to ECB)</th>
<th>Number of Months Lake O Causes a Damaging Event</th>
<th>% Estuary “Months with Impact” Reduction (relative to ECB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>St Lucie Estuary</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existing Condition Baseline (ECB) (For Comparison)</td>
<td>165</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Future with Restoration Projects (CEPP, LOWRP, C43, IRL, etc...)</td>
<td>96</td>
<td>42%</td>
<td>14</td>
<td>55%</td>
</tr>
<tr>
<td>Future with Restoration Projects + 50 Deep Injection Wells</td>
<td>54</td>
<td>67%</td>
<td>8</td>
<td>74%</td>
</tr>
<tr>
<td>Caloosahatchee Estuary</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existing Condition Baseline (ECB) (For Comparison)</td>
<td>416</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Future with Restoration Projects (CEPP, LOWRP, C43, IRL, etc...)</td>
<td>161</td>
<td>61%</td>
<td>13</td>
<td>66%</td>
</tr>
<tr>
<td>Future with Restoration Projects + 50 Deep Injection Wells</td>
<td>97</td>
<td>77%</td>
<td>8</td>
<td>79%</td>
</tr>
</tbody>
</table>
Deep Injection Well - SFWMD Concept Implementation and Cost
Deep Injection Wells are nothing new...

Over 200 active DIWs in Florida

- Almost all south of Orlando
- Most inject into the Boulder zone in the Floridan aquifer
- Stormwater not wastewater
Initial Site Prioritization Considerations

- Site identifies during previous studies
- SFWMD lands only
- Benefits could include nutrient load reductions
- Co-located with ASR wells, STAs and Reservoirs
- Favorable hydrogeologic conditions
- Existing wells on site
- Multi-well expandability
- Proximity to field services (Operations and Maintenance)
Deep Injection Well Facilities Conceptual Plan

- Construction could be phased
- Process starts with exploratory well at recommended locations
- Site configuration dependent on exploratory well results
- Needs further development

YEARS 1 and 2
Site investigations, design evaluations, and program development

Year 3 through Year 10
Construct 50+ DIWs
Estuary Protection in a Cost Effective Way

- Capital Costs: **$6 million** per Facility
 - Well: $3.5 million
 - Surface Facilities (piping, pump, monitor well, etc.): $2.5 million

- Operations & Maintenance Cost: **$140,000 - $185,000** per facility per year
 - Based on usage and facility design
 - Assumes facility operates 4 months
 - Electrical cost (primary driver)
 - In-house or subcontracted

- Total Cost for 50 Facilities
 - Permitting, Design, and Capital Costs: **$330 million**
 - Annual Operations & Maintenance Cost: ~ **$7.7 million – $10.2 million** (at full implementation)
Discussion