Appendix 4-1: Annual Monitoring Data Summary for ECP and Non-ECP Basin Discharge Structures

Stuart Van Horn (editor), Jonathan Madden and Doug Pescatore

Contributors: Carlos Adorisio and Youchao Wang

INTRODUCTION

Chapter 40E-63, Florida Administrative Code (F.A.C.) (Rule 40E-63), requires the South Florida Water Management District (District or SFWMD) to report on the status of the required water quality monitoring for determining compliance with total phosphorus (TP) load mandates for two Everglades Construction Project (ECP) basins, specifically, the Everglades Agricultural Area (EAA) and C-139 basins. Appendix 3-1b the 2006 South Florida Environmental Report – Volume I presents background and detail on the District data collection efforts for these basins. Rule 40E-63 Appendices A and B present information on the basin-level monitoring requirements, equations, and models used to calculate observed and predicted TP loads for the EAA and C-139 basins, and Appendices A3 and B2 outline data collection requirements, respectively. The Rule appendices can be found on the *What We Do, Permitting/Regulation, Rules, Statutes, & Criteria* section of the District website at www.sfwmd.gov.

This appendix provides summaries of TP data collected at all EAA and C-139 basin level compliance structures, updates on the status of the current quality level of flow rating equations, and summaries of the flow, TP load, and flow-weighted mean (FWM) TP concentration at each structure for Water Year 2006 (WY2006) (May 1, 2005–April 30, 2006). Additionally, this appendix describes the EAA TP load calculation methodology and equation details using WY2006 data.

For the eight non-ECP basins, the Florida Department of Environmental Protection (FDEP) permit No. 06,502590709 requires that the District report on the status of required water quality monitoring to evaluate the effectiveness of the source control strategies. The data collection requirements for structures associated with non-ECP basins are outlined in the non-ECP permit. Chapter 3A and Appendix 3A-4 of this volume provide the WY2006 update on the District's data collection efforts for non-ECP structures. This appendix summarizes the flow, TP load, and FWM TP concentration at each non-ECP basin discharge structure for WY1998 through WY2006.

BASIN-LEVEL MONITORING DATA AND COMPLIANCE EQUATIONS

EVERGLADES CONSTRUCTION PROJECT BASINS

During WY2006, 26 structures comprised the modeling boundary of the EAA basin and 25 water quality monitoring sampling points represented the water quality of flow through those structures. In the C-139 basin, six modeling boundary structures (G-406, G-342A–D, and G-136) are monitored directly. The G-136 structure also serves as the inflow and outflow boundary point, respectively, for the EAA and C-139 basins.

The EAA basin-level compliance determination is based on water year monitoring at various inflow and outflow points defining the boundary of the four major EAA sub-basins (S5A, S2/S6, S2/S7, and S3/S8) and the conveyance canals serving those sub-basin. In Chapter 4 of this volume, Table 4-4 summarizes the structures defining the WY2006 boundary and the effective period for each EAA sub-basin. During WY2006, a new outflow canal for Stormwater Treatment Area 5 (STA-5) was constructed to convey treated discharge from the C-139 basin directly to the Everglades Protection Area (EPA), thus ending the routing of STA-5 outflows to STA-3/4 (which essentially resulted in double-treatment of C-139 basin runoff). During June and July 2006, construction of the new outflow canal required a phased sequence of canal plug installation and removal to direct flows away from STA-3/4. District operational protocols during this period involved balancing the flows at pump station S-8 so that STA-5 treated outflows would be pulled toward S-8 through the new outflow canal instead of toward STA-3/4. Collection of streamflow and TP data by grab sampling methods was accomplished during the plug installation and removal sequences, to gauge flows through the open channel connection and compute TP loads for the EAA compliance calculations. The monitoring data for this event was designated as G373BC.

Table 1 provides TP sampling statistics for all the locations monitored by the District for the EAA basin during WY2006. The summary is restricted to data collected during the effective period that the structure was used for defining the EAA basin modeling boundary (see Chapter 4, Table 4-4). For instance, because the G-344A, B, C, and D structures were removed from the EAA modeling boundary on July 22, 2005, only the data collected during WY2006 through that date are reported in **Table 1**.

Table 2 summarizes the annual flow, TP load, and FWM TP concentration for every structure used during WY2006 to determine overall compliance with EAA load reduction requirements. Annual individual summaries are not intended to be aggregated to mass-balance the flows and loads for a reported EAA TP load. Rather, the structure summaries are presented as an accounting of the annual flow and TP load at each structure that inflows and outflows from each EAA sub-basin. The more complicated mass-balance procedures outlined in Rule 40E-63 for deriving the annual water year TP load values within the EAA basin are accomplished through daily mass-balancing of individual structure results for each hydrologic sub-basin.

Compliance with EAA basin mandates is based on mathematical equations and methodology dictated by Rule 40E-63. The equations are reproduced in **Figure 1**. **Figure 2** presents the monthly rainfall totals for the EAA basin during WY2006 and related coefficients used to calculate the target load per Rule's equations. The target load accounts for a reduction in the EAA basin area by a factor equal to the current acreage divided by the baseline acreage. The predicted load (limit) is the pre-Best Management Practices (BMP) baseline period load adjusted for hydrologic variability associated with rainfall. Calculation of the limit is not required for WY2006 as the basin load was less than the target load.

Table 1. Summary statistics – WY2006 total phosphorus (TP) monitoring data for the	
Everglades Agricultural Area (EAA) basin.	

Sub-Basin (canal)	Structure	Sampling Point	Sample Type	Number Sampled	Number Used	Min. (ppm)	Max. (ppm)	Number Flagged	Flow*** Curve Rating
	S-352	S-352	Grab	45	23	0.149	0.478	1	Good
			Composite*	12	12	0.184	0.298	0	
S5A	S-5A Complex	S-5A	Grab	51	25	0.070	0.435	0	Good
(WPB canal)			Composite*	35	34	0.077	0.349	0	
	EBPS	EBEACH	Grab	51	33	0.075	0.716	0	Good
			Composite*	47	45	0.092	1.560	1	
	S-2 Complex	S2	Grab	19	3	0.097	0.304	1	Good
			Composite*	2	2	0.080	0.263	0	
		S351	Grab	36	23	0.069	0.470	0	Good
			Composite*	8	8	0.086	0.211	0	
S2/S6	S-6	S-6	Grab	51	26	0.020	0.200	0	Good
(HILLS canal)			Composite*	38	37	0.037	0.279	1	
	G-328	G328	Grab	51	13	0.010	0.126	0	Fair
			Composite*	15	15	0.022	0.232	0	
	ESPS	ESHORE2	Grab	50	11	0.038	0.444	1	Good
			Composite*	24	22	0.051	0.579	2	
	S-2 Complex	S2	Grab	19	3	0.097	0.304	1	Good
			Composite*	2	2	0.080	0.263	0	
S2/S7		S351	Grab	36	23	0.069	0.470	0	Good
(NNR canal)			Composite*	8	8	0.086	0.211	0	
	G-370	G-370	Grab	51	25	0.033	0.208	0	Excellent
			Composite*	43	35	0.033	0.270	1	
	G-371	G-371	Grab	14	1	0.023	0.078	1	N/A

* Composite samples could be time-proportional, flow-proportional, or a combination of the two.

** These structures were evaluated through July 22, 2005, when they were removed from the model boundaries.

*** Flow Curve Rating: Discharge estimates derived from theoretical equations are within a range of expected values based on streamflow measurements used to calibrate the theoretical equations and are classified as: Excellent (< 5%), Good (< 10%), Fair (< 15%), or Poor (> 15%).

N/A Not available. In some cases, streamflow measurements are not sufficient to calibrate theoretical equations and the flow curve rating cannot adequately be determined.

Sub-Basin (canal)	Structure	Sampling Point	Sample Type	Number Sampled	Number Used	Min. (ppm)	Max. (ppm)	Number Flagged	Flow*** Curve Rating
S3/S8	S-3 Complex	S3	Grab	19	0	0.099	0.284	1	Excellent
(MIA canal)			Composite*	2	2	0.151	0.178	0	
		S354	Grab	41	22	0.074	0.302	0	Excellent
			Composite*	8	8	0.104	0.211	0	
	G-136	G136	Grab	50	28	0.021	0.387	0	Poor
			Composite*	42	32	0.031	1.440	2	
	SSDDMC	SSDDMC	Grab	50	20	0.046	0.249	2	N/A
			Composite*	31	30	0.035	0.214	1	
	SFCD5E	SFCD5E	Grab	34	15	0.066	0.268	0	N/A
			Composite*	18	18	0.056	0.614	0	
	G-344A**	G344A	Grab	6	0	0.088	0.355	0	Good
			Composite*	1	1	0.130	0.130	0	
	G-344B**	G344B	Grab	6	1	0.094	0.270	0	N/A
			Composite*	3	2	0.110	0.192	1	
	G-344C**	G344C	Grab	12	12	0.034	0.205	0	N/A
			Composite*	11	11	0.030	0.120	0	
	G-344D**	G344D	Grab	12	12	0.038	0.258	0	Good
			Composite*	11	11	0.049	0.190	0	
	G-410**	G410	Grab	12	3	0.031	0.125	0	Good
			Composite*	5	5	0.032	0.048	0	
	G-372	G-372	Grab	51	26	0.025	0.315	0	Excellent
			Composite*	45	45	0.032	0.233	0	
	G-373/373BC	G-373	Grab	36	10	0.035	0.248	2	N/A

Table 1. Continued.

 Composite samples could be time-proportional, flow-proportional, or a combination of the two.
These structures were evaluated through July 22, 2005, when they were removed from the model boundaries.
Flow Curve Rating: Discharge estimates derived from theoretical equations are within a range of expected values based on streamflow measurements used to calibrate the theoretical equations and are classified as: Excellent (< 5%), Good (< 10%), Fair (< 15%), or Poor (> 15%).

N/A Not available. In some cases, streamflow measurements are not sufficient to calibrate theoretical equations and the flow curve rating cannot adequately be determined.

Sub- Basin (canal)		Direction	Structure	Load (mt)	Flow (kac-ft)	Conc (ppb)		
		to Lake Okeechobee	S-352	0.00	0.00	N/A		
	Outflow	to STA-1 Inflow & Distribution Works	S-5A + S-5AW	56.81	208.42	221		
S5A		Total		56.81	208.42	221		
(WPB			-					
Canal)		from Lake Okeechobee	S-352	29.06	80.18	294		
· · · · ,	Inflow	from L-8 Canal	S-5A + S-5AW	0.12	0.57	167		
		from East Beach WCD	EBPS3	8.73	14.58	485		
		Total		37.91	95.33	322		
	1	1						
		to Lake Okeechobee	S-2	2.31	10.34	181		
	Outflow	to STA-2 Inflow Canal	S-6	43.07	282.06	124		
S2/S6		to STA-2 Inflow Canal	G-328	1.06	15.63	55		
(HILLS		Total		46.45	308.03	122		
Canal)		from Lake Okeechobee	S-351	66.48	200.06	269		
	Inflow	from East Shore WCD	ESPS2	6.87	200.08	209		
	millow	Total	L3F 32	73.35	20.80 226.86	208 262		
		10141		10.00	220.00	202		
		to Lake Okeechobee*	9	ee S-2 abov	۵			
		to STA-3/4	39.71	252.72	127			
S2/S7	Outflow	to STA-3/4 Bypass Structure	G-370 G-371	0.42	4.38	78		
(NNR		Total		40.13	257.11	127		
Canal)					-			
	Inflow	from Lake Okeechobee*	see S-351 above					
	Inflow	Total		not applicable				
		to Lake Okeechobee	S-3	0.57	1.99	231		
		to Rotenberger WMA**	G-410	0.06	1.14	43		
		to STA-3/4	G-372	65.90	445.58	120		
	Outflow	to STA-3/4 Diversion Structure	G-373	2.16	12.83	136		
62/60		to new STA-5 Outflow Channel (Temporary)	G-373BC	6.13	57.84	86		
S3/S8 (MIA		Total		74.82	519.37	117		
Canal)								
Junary		from Lake Okeechobee	S-354	33.77	130.78	209		
		from South Shore DD	SSDDMC	2.43	14.72	134		
	Inflow	from So. Fl. Cons. Dist.	SFCD5E	3.35	17.08	159		
	Inflow	from C-139 Basin	G-136	9.68	30.57	257		
		from STA-5**	G-344 (a,b,c,d)	7.23	61.53	95		
		Total		56.46	254.69	180		

Table 2. WY2006 flow volumes, TP loads, and flow-weighted mean (FWM)	
TP concentrations for EAA basin structures.	

The S-351 inflow and S-2 outflow sites serve the S2/S6 and S2/S7 sub-basins. The total is shown only once * to avoid double-counting the data. These structures were evaluated through July 22, 2005, when they were removed from the model

** boundaries. RULE 40E-63 EAA BASIN COMPLIANCE MODEL To reflect the required 25% reduction period of record TP loads are multiplied by 0.75 before performing the following regression: In(L) = -7.998 + 2.868 X + 3.020 C - 0.3355 S [Explained Variance = 90.8%, Standard Error of Estimate = .183] Predictors (X,C,S) are calculated from the first three moments (m1,m2,m3) of the 12 monthly rainfall totals (r_i, i = 1,12, inches) for the current year: $m_1 = Sum[r_i] / 12$ $m_2 = [r_1 - m_1]^2 / 12$ $m_3 = [r_1 - m_1]^3 / 12$ $X = \ln (12 m_1)$ C = $[(12/11) m_2]^{0.5}/m_1$ $S = (12/11) m_3/m_2^{1.5}$ where, L = 12-month load attributed to EAA Runoff, reduced by 25% (metric tons) = natural logarithm of 12-month total rainfall (inches) Х C = coefficient of variation calculated from 12 monthly rainfall totals S = skewness coefficient calculated from 12 monthly rainfall totals The first predictor (X) indicates that load increases approximately with the cube of total annual rainfall. The second and third predictors (C & S) indicate that the load resulting from a given annual rainfall is higher when the distribution of monthly rainfall has higher variance or lower skewness. For a given annual rainfall, the lowest load occurs when rainfall is evenly distributed across months and the highest load occurs when all the rain falls in one month. Real cases fall in between. Compliance will be tracked by comparing the measured EAA Load with: Target = exp [-7.998 + 2.868X + 3.020 C - 0.3355 S] Limit = Target exp (1.476 SE F) = $0.1833 [1 + 1/9 + 5.125 (X-X_m)^2 + 17.613 (C-C_m)^2 + 0.5309 (S-S_m)^2$ SE $+8.439 (X-X_m) (C-C_m) - 1.284 (X-X_m) (S-S_m) - 3.058 (C-C_m) (S-S_m)]^{0.5}$ where, Target = predicted load for future rainfall conditions (metric tons/yr) = upper 90% confidence limit for target (metric tons/yr) Limit SE = standard error of predicted In(L) for May-April interval m = subscript denoting average value of predictor in base period $(X_m = 3.866, C_m = 0.7205, S_m$ F = factor to reflect variations in model standard error as a function of month (last in 12-month interval), calculated from base period: Feb Jul Oct Dec Jan Mar Apr May Jun Aug Sep Nov 1.609 1.346 2.474 1.975 1.000 1.440 1.238 1.321 2.045 2.669 2.420 2.216

Figure 1. Rule 40E-63, F.A.C., hydrologic adjustment and basin compliance mathematical equations to calculate annual TP reductions.

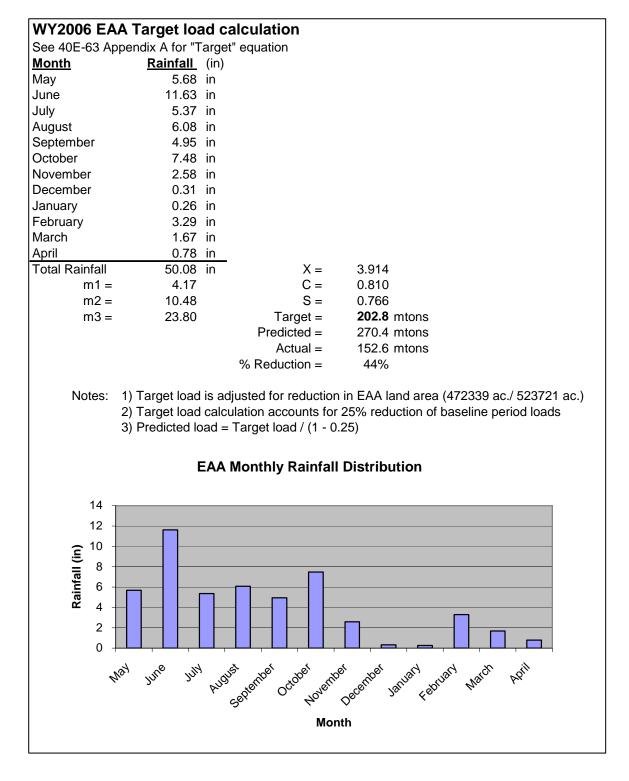


Figure 2. WY2006 EAA monthly rainfall totals, coefficients, and target load calculation.

Because rainfall and surface-water discharges vary with time and location throughout South Florida, an adjustment for these variations is made in the calculations. These hydrologic variabilities could be large enough to obscure measuring how effective the BMPs are in reducing phosphorus loads. In a dry year, for example, the total phosphorus discharged from the EAA may be very low, which leads to the question of whether this is because of the BMPs or less rain? The hydrologic adjustment attempts, to the greatest extent practicable, to factor out annual rainfall variations so one can directly compare any current year's phosphorus load with that of the 1979–1988 base period. The resulting mathematical equations predict what the average annual phosphorus load for the EAA during pre-BMP base period would have been if the annual rainfall and distribution measured for a current year had occurred during that base period. The percentage reduction is computed by comparing the current year's total phosphorus load with what the predicted average annual load of the base period would have been had the current year's rainfall pattern occurred during the pre-BMP base period.

Table 3 provides TP sampling statistics for all the locations monitored by the District for the C-139 basin during WY2006. Chapter 4 of this volume presents the annual flow, TP load, and FWM TP concentration for each structure (see Table 4-9 in Chapter 4 of this volume). The TP load compliance equations for the C-139 basin can be found in Rule 40E-63 and are not reproduced herein.

NON-ECP BASINS

During WY2006, 11 structures served as direct or indirect discharge points from non-ECP basins into the EPA. While eight of these structures are within the control of the District and are referred to as "INTO" structures under the non-ECP permit, this appendix also incorporates flow and TP data for the remaining three structures, ACME1, ACME2, and NSID1.

Appendix 3A-4 presents WY2006 water quality sampling statistics for these non-ECP basin discharge structures. This appendix summarizes the annual and total flow, TP load, and FWM TP concentration for each structure in **Table 4**. The table also summarizes the total flow, TP load, and FWM TP concentration for Water Conservation Areas 1, 2A, and 3A and Everglades National Park from non-ECP basins per water year and for the period of record.

Table 3. Summary statistics – WY2006 TP monitoring data	
for the C-139 basin.	

Structure	Sampling Point	Sample Type	Number Sampled	Number Used	Min. (ppm)	Max. (ppm)	Number Flagged	Flow** Curve Rating
G-342A	G342A	Grab	51	25	0.043	0.290	2	Good
		Composite*	36	30	0.059	0.509	6	
G-342B	G342B	Grab	51	34	0.051	0.429	1	Good
		Composite*	42	36	0.066	0.523	5	
G-342C	G342C	Grab	39	34	0.064	0.544	0	Good
		Composite*	34	34	0.059	0.786	0	
G-342D	G342D	Grab	39	32	0.024	0.517	1	Good
		Composite*	34	33	0.034	0.561	0	
G-406	G406	Grab	21	16	0.052	0.717	0	Fair
		Composite*	16	16	0.164	0.882	0	
G-136	G136	Grab	50	28	0.021	0.387	0	Poor
		Composite*	42	32	0.031	1.440	2	

* Composite samples could be time proportional, flow proportional, or a combination of the two.

** Flow Rating Curve: Discharge estimates derived from theoretical equations are within a range of expected values based on streamflow measurements used to calibrate the theoretical equations and are classified as: Excellent (< 5%), Good (< 10%), Fair (< 15%), or Poor (> 15%).

	Non-ECP Basin Structures into Water Conservation Area 1 (WCA-1)													
	WY	1998	1999	2000	2001	2002	2003	2004	2005	2006	Total			
	Flow Vol. (kac-ft)	26.394	19.791	19.220	6.252	15.670	8.813	10.018	12.317	14.161	132.636			
ACME1	TP Load (mt)	2.865	3.662	3.627	0.501	1.720	0.867	0.957	2.021	1.403	17.623			
	TP FWMC (ppb)	88	150	153	65	89	80	77	133	80	108			
	Flow Vol. (kac-ft)	20.898	16.943	19.790	7.696	17.524	9.469	9.871	11.246	12.767	126.204			
ACME2	TP Load (mt)	2.604	3.616	3.320	1.111	3.286	1.387	1.227	2.948	1.832	21.331			
	TP FWMC (ppb)	101	173	136	117	152	119	101	212	116	137			
	Flow Vol. (kac-ft)	47.292	36.734	39.010	13.948	33.194	18.282	19.889	23.563	26.928	258.840			
Total WCA-1)	TP Load (mt)	5.469	7.278	6.947	1.612	5.006	2.254	2.184	4.969	3.235	38.954			
	TP FWMC (ppb)	94	161	144	94	122	100	89	171	97	122			

Table 4. WY1998 through WY2006 non-ECP basin structure flow volume, TP load, and FWM TP concentration to the
Everglades Protection Area (EPA) by tributary basin.

	Non-ECP Basin Structures into Water Conservation Area 2A (WCA-2A)													
NSID1 Total (WCA-2A)	WY	1998	1999	2000	2001	2002	2003	2004	2005	2006	Total			
	Flow Vol. (kac-ft)	7.364	6.762	9.881	2.412	2.494	0.688	0	0.354	0	29.955			
	TP Load (mt)	0.300	0.150	0.329	0.048	0.049	0.025*	0	0.009	0	0.910			
	TP FWMC (ppb)	33	18	27	16	16	NDF	NF	20	NF	25			

* Load calculated from arithmetic mean concentration

NDF No data with flow

NF No flow for period

	Non-ECP Basin Structures into Water Conservation Area 3A (WCA-3A)												
	WY	1998	1999	2000	2001	2002	2003	2004	2005	2006	Total		
	Flow Vol. (kac-ft)	70.317	47.504	97.586	37.286	84.982	88.026	117.699	94.581	150.359	788.340		
S-190	TP Load (mt)	7.026	4.453	13.241	8.141	9.329	9.358	14.410	11.288	28.717	105.963		
	TP FWMC (ppb)	81	76	110	177	89	86	99	97	155	109		
	Flow Vol. (kac-ft)	155.848	94.543	180.011	62.972	109.994	136.424	136.152	137.976	203.575	1,217.438		
S-140	TP Load (mt)	6.920	6.414	15.543	11.185	6.460	10.444	7.018	7.215	12.507	83.453		
	TP FWMC (ppb)	36	55	70	144	48	62	42	42	50	56		
	Flow Vol. (kac-ft)	ND	ND	ND	38.379	52.047	0.000	2.299	0	0	92.725		
G-123	TP Load (mt)	ND	ND	ND	0.615	1.057	0.000	0.046	0	0	1.718		
	TP FWMC (ppb)	ND	ND	ND	13	16	NF	16	NF	NF	15		
	Flow Vol. (kac-ft)	250.350	221.585	273.612	172.045	283.618	264.301	149.708	93.403	128.470	1,837.092		
S-9	TP Load (mt)	5.250	5.193	10.125	4.881	6.716	5.580	3.387	2.140	3.055	46.327		
	TP FWMC (ppb)	17	19	30	23	19	17	18	19	19	20		
	Flow Vol. (kac-ft)	NO	NO	NO	NO	NO	NO	107.609	56.584	61.345	225.538		
S-9A	TP Load (mt)	NO	NO	NO	NO	NO	NO	1.735	0.832	1.207	3.774		
	TP FWMC (ppb)	NO	NO	NO	NO	NO	NO	13	12	16	14		
	Flow Vol. (kac-ft)	476.515	363.632	551.209	310.682	530.641	488.694	513.467	382.544	543.749	4,161.133		
Total WCA-3A)	TP Load (mt)	19.196	16.060	38.909	24.822	23.562	25.129	26.596	21.475	45.486	241.235		
	TP FWMC (ppb)	33	36	57	65	36	42	42	46	68	47		

Table 4. Continued.

ND - No data / data incomplete for G-123 prior to WY2001
NF - No flow for period
NO - Structure not operational for period

		No	n-ECP Basi	n Structure	s into Everg	glades Natio	onal Park (E	NP)			
	WY	1998	1999	2000	2001	2002	2003	2004	2005	2006	Total
	Flow Vol. (kac-ft)	N/A	N/A	N/A	8.917	13.967	6.337	5.483	30.059	9.203	73.966
S-174	TP Load (mt)	N/A	N/A	N/A	0.077	0.121	0.066	0.040	0.451	0.156	0.910
	TP FWMC (ppb)	N/A	N/A	N/A	7	7	8	6	12	14	10
	Flow Vol. (kac-ft)	28.490	17.047	97.537	N/A	N/A	N/A	N/A	N/A	N/A	143.074
S-175	TP Load (mt)	0.281	0.126	0.962	N/A	N/A	N/A	N/A	N/A	N/A	1.369
	TP FWMC (ppb)	8	6	8	N/A	N/A	N/A	N/A	N/A	N/A	8
	Flow Vol. (kac-ft)	226.424	127.267	193.256	151.696	172.835	134.932	158.813	100.689	188.505	1,454.417
S-18C	TP Load (mt)	2.793	1.884	1.907	1.684	1.525	1.200	1.845	0.988	3.298	17.124
	TP FWMC (ppb)	10	12	8	9	7	7	9	8	14	10
	Flow Vol. (kac-ft)	160.029	107.189	199.949	N/A	N/A	N/A	N/A	N/A	N/A	467.167
S-332	TP Load (mt)	1.382	0.926	1.726	N/A	N/A	N/A	N/A	N/A	N/A	4.034
	TP FWMC (ppb)	7	7	7	N/A	N/A	N/A	N/A	N/A	N/A	7
	Flow Vol. (kac-ft)	NO	NO	NO	NO	144.183	90.238	128.002	76.480	153.803	592.706
S-332D	TP Load (mt)	NO	NO	NO	NO	0.939	0.676	0.908	0.586	2.055	5.164
	TP FWMC (ppb)	NO	NO	NO	NO	5	6	6	6	11	7
	Flow Vol. (kac-ft)	414.943	251.503	490.742	160.613	330.985	231.507	292.298	207.228	351.511	2,731.330
Total (ENP)	TP Load (mt)	4.456	2.936	4.595	1.761	2.585	1.942	2.793	2.025	5.509	28.601
(,	TP FWMC (ppb)	9	9	8	9	6	7	8	8	13	8

Table 4. Continued.

N/A - Not applicable; flow and load calculation at S-175 and S-332 replaced in WY2001 with S-174 and S-332D NO - Structure not operational for period