# Appendix 5-3: Biennial Permit Report for the C-4 Emergency Detention Basin

Ken Chen, Rick Householder, John Leslie, Matt Powers Brad Robbins and Shi Xue

# SUMMARY

Based on Florida Department of Environmental Protection (FDEP) permit reporting guidelines, **Table 1** lists key permit-related information associated with this report. **Table 2** lists the attachments included with this report. Table A-1 in Attachment A lists the specific pages, tables, graphs, and attachments where project status and annual reporting requirements are addressed. This annual report satisfies the reporting requirements specified in the permit, and is the final report required by the permit.

| Project Name:                                                                                                                                   | C-4 Emergency Detention Basin                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Permit Numbers:                                                                                                                                 | EI 13-0192729-001 and EI 13-0192729-004                                                                                                                                             |
| Issue and Expiration Dates:                                                                                                                     |                                                                                                                                                                                     |
| EI 13-0192729-001<br>EI 13-0192729-002<br>EI 13-0192729-003<br>EI 13-0192729-004<br>EI 13-0192729-008<br>EI 13-0192729-010<br>EI 13-0192729-011 | Issued: 9/10/2002; Expires: 9/9/2002<br>Issued: 2/14/2003<br>Issued: 3/4/2003<br>Issued: 9/26/2003; Expires: 9/25/2008<br>Issued: 2/3/2005<br>Issued: 7/2/2007<br>Issued: 9/25/2008 |
| Project Phase:                                                                                                                                  | &                                                                                                                                                                                   |
| Permit Condition Requiring<br>Annual Monitoring Report:                                                                                         | 8 (in El 13-0192729-001)<br>11 (in El 13-0192729-004)                                                                                                                               |
| Relevant Period of Record:                                                                                                                      | May 1, 2009 – April 30, 2011                                                                                                                                                        |
| Report Generator:                                                                                                                               | Rick Householder<br><u>ehouseh@sfwmd.gov</u><br>561-682-6582                                                                                                                        |
| Permit Coordinator:                                                                                                                             | John Leslie<br>jleslie@sfwmd.gov<br>561-682-6476                                                                                                                                    |

 Table 1. Key permit-related information.

| Attachment | Title                                                                                 |
|------------|---------------------------------------------------------------------------------------|
| А          | Specific Conditions and Cross-References                                              |
| В          | Water Quality Data Summary (May 1, 2010 – April 30, 2011)                             |
| С          | Water Quality Data (May 1, 2009 – April 30, 2011)                                     |
| D          | Hydrological Data (May 1, 2009 – April 30, 2011)                                      |
| E          | Intensive Vegetation Survey Results                                                   |
| F          | Vegetation Monitoring Report:<br>Stereo-Imagery Rectification Accuracy (MATCH-AT log) |
| G          | Vegetation Monitoring Report: Ground-Truthing Results                                 |
| н          | Vegetation Monitoring Report:<br>GIS Habitat Maps 2011, 2009, 2007 and 2005           |
| I          | Vegetation Monitoring Report:<br>Change Detection Maps and Table                      |
| J          | Field Notes                                                                           |
| К          | Workshop Presentation                                                                 |

# INTRODUCTION

The South Florida Water Management District (SFWMD or District) was issued Environmental Resource Permit 13-0192729-001 and 13-0192729-004 by the Florida Department of Environmental Protection (FDEP) to construct and operate Phases I and II, respectively, of the C-4 Emergency Detention Basin (C-4 EDB, **Figure 1**). This report provides an estimate of the total phosphorus (TP) mass budget on an event basis and cumulatively for the fifth and sixth years of operation of the C-4 EDB. This fulfills the TP mass budget reporting requirement in Specific Condition 11 of the permit modification (13-0192729-008) issued on February 3, 2005, for the third biennial reporting period (May 2009–April 2011).

The C-4 EDB is in the Miami-Dade County Lake Belt Area and includes projects within jurisdictional wetlands in the North Trail Wetland Basin, located adjacent to and immediately north of the C-4 canal and west of the Dade-Broward Levee (Section 4, Township 54 South, Range 39 East). The C-4 EDB provides improved flood protection for the city of Sweetwater and surrounding areas during extreme events by providing 3,264 acre-feet (ac-ft) of aboveground storage for floodwaters. During a major storm event, the C-4 EDB pumps convey floodwaters from the C-4 canal into the storage detention basins (both Phase I and Phase II), which helps reduce flooding of the area further east. After the event and stages in the C-4 canal have returned to normal, the floodwaters discharge from the EDB back to the C-4 canal and eventually to tide. Construction of the water management infrastructure was certified complete in May 2005, and the facility became administratively operational in November 2006 after stage monitoring equipment was relocated and recalibrated to maximize accuracy and minimize siltation.

# BACKGROUND

The C-4 EDB is in the North Trail Wetland Basin in southwestern Miami-Dade County between SW 137<sup>th</sup> Avenue and Krome Avenue and accessible via Tamiami Trail (SW 8<sup>th</sup> Street, U.S. 41), which runs along the facility's southern border. It was constructed to reduce the magnitude, duration, and frequency of flooding of low-lying areas within the jurisdictions of the cities of Sweetwater, West Miami, and western Miami-Dade County (the "Flagami District"). Such flooding occurred during intense rainfalls accompanying several unnamed (2000) and named tropical storms and Hurricane Irene (1999) in the previous decade. A naturally low-lying, high-seepage area was chosen for the facility between the Dade-Broward Levee and Canal to the west and an abandoned orange grove to the east and between a mining operation to the north and the C-4 canal to the south. On the other side of the Dade-Broward Levee is the Pennsuco Wetlands Area, portions of which are owned by the District.

The C-4 EDB was constructed in phases. Phase I includes the northern section and encompasses 415 acres. The remaining 416 acres is Phase II. Together, the two areas total 831 acres. Construction of the Phase I levees, seepage canal, and the G-420 and G-420S pumps was completed in March 2002. Phase II was completed in May 2005. The G-420S pump was replaced in April 2006.

The Phase I and Phase II lands were both owned by private and public entities. The District obtained a 50-year easement from the State of Florida for Phase I. Phase II lands were obtained by using funds from the Federal Emergency Management Agency (FEMA) and the Florida Department of Community Affairs (DCA), as well as funds from the Conservation and Recreation Lands Trust Fund (CARL). Phase I will eventually become part of the East Coast Buffer Project. CEMEX, Inc., has mineral extraction rights for a substantial portion of the Phase I parcel for the next 50 years, but the start date and duration of mining are not yet known. During extraction operations, the Phase I section can only be flooded to a maximum depth of 2 feet (ft) rather than the designed 4 ft. The District has been reimbursed for the entire cost of the project by FEMA. Pump and weir construction for Phase I and II were completed in July 2004 and May 2005, respectively.



Figure 1. Overview of the C-4 Emergency Detention Basin (C-4 EDB).

# PERMIT CONDITIONS

In applying for the permit, the District agreed to remediate wetlands degraded by construction and remove all exotic trees. Both efforts have been successful. The District also assured the issuing authorities that the risk of adverse impacts to native, short hydroperiod wetland vegetation and wildlife would be *de minimis* if the facility was operated infrequently and in such a manner as to minimize the stage-duration by emptying the accumulated rain, groundwater, and inflow water rapidly following a pumping event.

The permits from the U.S. Army Corps of Engineers (USACE) and Miami-Dade County Department of Environmental Resources Management cross-referenced the FDEP permit general and specific conditions, but the USACE permit added a focus on the eradication of primrose willow (*Ludwigia peruviana*), as well as melaleuca (*Melaleuca quinquenervia*). The effectiveness of the exotic plant eradication program is documented annually pursuant to Specific Conditions 8 and 12 of the Phase I and II permits, respectively.

In September 2008, the FDEP issued permit modification #EI 13-012729-011, which amended specific conditions 8 and 11 for the Phase 1 and 2 monitoring in permit modifications #EI 13-0192729-001 and 13-0192729-004. This allowed biennial vegetation monitoring via aerial photography and quarterly monitoring of wildlife from the levees in conjunction with water quality monitoring.

A six-year biennial monitoring program was established to detect, quantify, and report significant changes in vegetation habitat, wildlife utilization, water quality, and periphyton growth within the Phase I (north) and Phase II (south) basins of the C-4 EDB.

# ACTIVE MANDATES AND PERMIT

The original Environmental Resource Permit (ERP) and all major modifications issued to the SFWMD are:

- #EI 13-0192729-001; issued September 10, 2002, with the expiration of the construction phase on September 9, 2007 (Phase 1)
- #EI 13-0192729-004; issued September 26, 2006, with the expiration of the construction phase on September 25, 2008 (Phase 2)
- #EI 13-0192729-008; issued on February 3, 2005, to modify the project's monitoring requirements by reducing the frequency of monitoring the wetlands within the Phase 1 and Phase 2 Detention Basins.
- #EI 13-012729-010; issued on July 2, 2007, to modify the project's monitoring requirements, which reduced the frequency of wildlife observations from quarterly to semi-annually, periphyton monitoring will coincide with the biennial aerial survey, the Biennial Environmental Impact Evaluation Workshop will be conducted in September instead of July, and the evaluation report is due in November instead of July.
- #EI 13-012729-011; issued on September 25, 2008, to modify the project's monitoring requirements (wildlife observations shall be implemented once every other year incidental to ground-truthing for vegetation monitoring via aerial photography for the period 2005 through 2011).

ERP #EI 13-0192729-001 and ERP #EI 13-0192729-004 were issued for the construction of the Phase 1 and Phase 2 detention basins, levees and seepage canals respectively. In addition, these permits granted approval for the construction of the G-420 and G-422 pump stations, the G-421 spillway, C-4 inflow canal, G-420S seepage pump, and the G-423 divide structure.

On November 8, 2006, the FDEP approved the As-Built Certification of the C-4 EDB and concurred that this facility was constructed in accordance with the FDEP's permits.

# WATER QUALITY

To monitor the water quality entering and leaving the C-4 EDB, the SFWMD, in cooperation with the FDEP, has established a water quality monitoring plan. This plan has been implemented by the SFWMD since the C-4 EDB project inception. This plan has been altered by several permit modifications throughout the project's life, most recently by a letter modification approving a switch from auto-samplers to grab samples. This letter modification occurred February 8, 2010, and the following methodology reflects the water quality monitoring plan since that most recent modification.

## METHODOLOGY

Three water quality monitoring stations, G-420, G-421 and G-422, are in the C-4 EDB. The G-420 and G-422 stations are located just upstream of pump stations and G-421 is a gate structure that allows water in or out of the basin (**Figure 2**). If flow occurred at a station, the station was sampled within 72 hours of the flow event and then on a weekly basis thereafter. If no flow occurred at a station during the quarter, a quarterly grab sample was collected at G-420. Samples were analyzed for total phosphorus (TPO4), orthophosphate (OPO4), total dissolved phosphorus (TDPO4), total Kjeldahl nitrogen (TKN), total dissolved Kjeldahl nitrogen (TDKN), nitrate+nitrite (NOx), and temperature (TEMP). Sample stations, parameters, and frequency of sampling are summarized in **Table 3**. All samples were collected using the grab method outlined

in the SFWMD's Field Sampling Quality Manual (FSQM) (SFWMD, 2011) and in accordance with FDEP standard operating procedures (SOPs). To satisfy requirements of the FSQM, quality control (QC) samples were collected along with the sample. The QC samples consisted of a single equipment blank and two replicate samples each quarter.

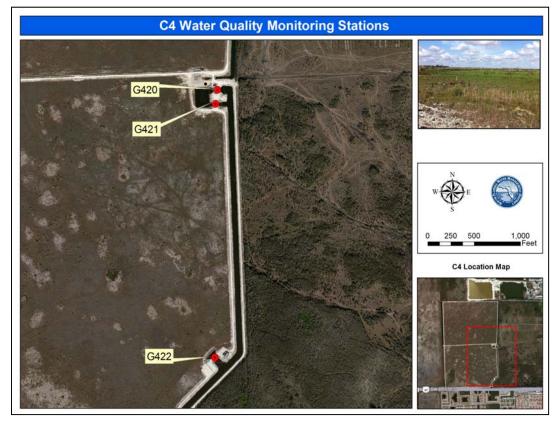



Figure 2. Water quality monitoring stations associated with the C-4 EDB.

| Station                            | Coordinates                 | Parameters                                 | Frequency                                   |  |  |
|------------------------------------|-----------------------------|--------------------------------------------|---------------------------------------------|--|--|
| G-420                              | 25°46'18"N<br>-80°26'02"W   | TPO4, OPO4, TDPO4, TKN, TDKN,<br>NOx, TEMP | Weekly when flow,<br>otherwise<br>quarterly |  |  |
| G-421                              | 25°46'17''N<br>-80°26'02''W | TPO4, OPO4, TDPO4, TKN, TDKN,<br>NOX, TEMP | Weekly when flow                            |  |  |
| G-422                              | 25°45'49''N<br>-80°26'03''W | TPO4, OPO4, TDPO4, TKN, TDKN,<br>NOX, TEMP | Weekly when flow                            |  |  |
| TPO <sub>4</sub> : total phosphor  | us                          | TDKN: total dissolved Kjeldahl nitro       | gen                                         |  |  |
| OPO <sub>4</sub> : orthophosphat   | te                          | NOx: nitrate+nitrite                       |                                             |  |  |
| TDPO <sub>4</sub> : total dissolve | d phosphorus                | TEMP: temperature                          |                                             |  |  |

 Table 3. C-4 EDB water quality stations, parameters, and frequencies.

TKN: total Kjeldahl nitrogen

# RESULTS

Six sampling events occurred during the reporting period (**Table 4**). Of these sampling events, only one was triggered by flow into the C-4 EDB. This flow event occurred on September 30, 2010, in response to Tropical Storm Nicole. All other sampling events were considered quarterly and were required to meet the permit condition that there is at least one sampling event every quarter. Additional water quality data are provided in Attachments B and C.

| Station | Date<br>Collected | TDKN<br>(mg/L) | TKN<br>(mg/L) | NOX<br>(mg/L) | TDPO4<br>(μg/L) | OPO4<br>(µg/L) | TPO4<br>(µg/L) | TEMP<br>(C) |
|---------|-------------------|----------------|---------------|---------------|-----------------|----------------|----------------|-------------|
|         | 3/29/10           | 1.2            | 1.2           | 0.014         | 2               | 2              | 6              | 24.2        |
|         | 5/27/10           | 1.1            | 1.1           | 0.011         | 2               | 2              | 6              | 25.6        |
| G-420   | 9/01/10           | 1.2            | 1.2           | 0.005         | 5               | 3              | 7              | 26.1        |
| G-420   | 9/30/10           | 1.3            | 1.3           | 0.059         | 5               | 2              | 7              | 25.8        |
|         | 12/01/10          | 1.3            | 1.3           | 0.005         | 3               | 2              | 9              | 25.9        |
|         | 3/01/11           | 1.2            | 1.3           | 0.005         | 2               | 2              | 9              | 24.7        |

 Table 4. Water quality sampling results.

mg/L: milligrams per liter

µg/L: micrograms per liter

C: degrees Celsius

# PERIPHYTON

## METHODOLOGY

Two periphyton stations were reestablished at G-421P and G-423P. G-423P was located approximately 100 ft north of the G-423 structure that separates Phase I from Phase II. G-421P was located within the G-420 pump station retention pond 30 ft west of the G-421 structure (**Figure 3**).

Periphyton sampling was conducted according to the SFWMD's Taxonomic and Nutrient Periphyton SOP (SFWMD, 2010) and FDEP FS 7000, Quantitative Periphyton Sampling SOP (FDEP, 2008). Eight glass slides were housed in each of the three periphytometers and were deployed for 28 days. Periphytometers were deployed on June 2, 2011, and retrieved on June 30, 2011. Upon retrieval the glass slides were placed in reclosable plastic bags and transported in ice-filled coolers. The slides were scraped into 15 milliliter centrifuge tubes, fixed with a formalin solution, and shipped to the FDEP laboratory for analysis.



Figure 3. Periphyton monitoring station locations.

# RESULTS

During the periphytometer deployment period, the G-423P sampling station within the Phase I basin was dry (**Figure 4**); therefore no periphyton was collected.

The Phase II basin was also dry during the deployment period (**Figure 5**); however, sufficient water was present within the G-421P sample station (**Figure 6**). This site is located in the retention pond of the G-420 pump station and is not representative of typical basin conditions. This site represents conditions near the G-420 pump station, which experiences much longer periods of inundation (see **Figure 3**), but are not within the scope of this project. Therefore, the resulting periphyton samples were not submitted to the FDEP laboratory for analysis.

See Attachment A for field notes recorded during periphyton monitoring.



Figure 4. Periphytometers in Phase I of the C-4 EDB (June 2, 2011).



Figure 5. Location of the G-421 pump station retention pond in Phase II of the C-4 EDB.



Figure 6. G-421P retention pond surrounded by dry Phase II on June 2, 2011.

# TOTAL PHOSPHORUS

## INTRODUCTION

Water quality monitoring was used to determine the TP mass budget within the C-4 EDB. The SFWMD has conducted six years (beginning in May 2005) of monitoring to identify water quality changes caused by operation of the C-4 EDB as required by the related permits.

The data collected were used to:

- Determine overall nutrient load into and out of the C-4 EDB and document changes that result from operational and management decisions
- Provide environmental information for management of the C-4 EDB to monitor and document physical and chemical characteristics of source and receiving environments
- Provide the data necessary to identify potential environmental and ecological impact shifts resulting from management decisions

# DESCRIPTION OF THE FACILITIES

#### Water Management Infrastructure

#### G-420

Structure G-420 pumps are operated remotely following direction from the Miami-Dade County Flood Mitigation Program C-4 EDB Operating Plan. The structure is a three-unit pump station located north of the C-4 canal at the junction of U.S. 41 and S.W. 137<sup>th</sup> Avenue in Miami-

Dade County. The three pumps have a combined rating capacity of 700 cubic feet per second (cfs) and are used to move water from the C-4 canal into the C-4 EDB for flood control.

#### G-421

Water flows out of Phase I of the C-4 EDB into the supply canal and then to the C-4 canal via the G-421 spillway. The operation of the C-4 EDB is governed by the Interim Seasonal Operation Plan. G-421 pumps are turned on progressively if the T5 (C-4 canal at Tamiami Trail at Coral Gables) stage exceeds 5.00 feet in relation to the National Geodetic Vertical Datum of 1929 (ft NGVD 29), and all inflow impellers will be turned on if the T5 stage exceeds 5.20 ft NGVD 29. Pumping ceases when the stage in the C-4 EDB reaches 8.0 ft NGVD 29 and the T5 begins to recede below 5.90 ft NGVD 29, or the stage in the C-4 EDB exceeds the maximum elevation of 10.00 ft NGVD 29.

#### G-422

G-422 consists of a set of seven electric pumps powered by diesel generators. Together, the pumps have a total capacity of 700 cfs and move a maximum of 585 cfs with a 4-ft head difference. Inflow pumps are only operated when the stage in the C-4 canal meets the trigger criterion. Water gravity-flows from Phase I into the supply canal and then to the C-4 canal via the G-421 weir. Discharge occurs only after the flood-stage peak has passed. The structure was registered on March 11, 2006.

#### G-420S

A 100-cfs submersed electric pump (G-420S) located just to the northeast of G-420 is used to recirculate water collected in the seepage collection canal, which runs north-south along the east levee, back into Phase II.

#### G-423

Water enters and leaves Phase I through the G-423 weir, which will remain permanently, open until CEMEX, Inc. exercises its mineral extraction option. After the mining operation begins, G-423 will be closed and Phase I will be operated independently of Phase II. The maximum depth of Phase I will be 2 ft, while Phase II will be able to be filled to a maximum of 4 ft. No flow is monitored at this structure.

#### Operation

The only reportable flood control pumping event during the biennial reporting period (May 1, 2009–April 30, 2011) occurred during Tropical Storm Nicole (September 29–30, 2010). Additional flow occurred during extended pumping tests in June 2009 and May 2010.

#### Monitoring

In addition to authorizing the operation and maintenance of certain structures, the permit requires a routine water quality monitoring program to characterize the quality of water discharged through G-420, G-422, and G-421.

Monitoring is performed during periods of flow. Upon the start of pumping operations, sample collection by auto-samplers is initiated. Grab sample collection occurs within 48 hours after pumping. Monitoring is conducted at the designated sites until the inflow and outflow operations cease. The monitoring plan recommends collecting samples on a weekly basis during operations; however, other frequencies (for example, daily) could be collected if determined

necessary by the Field Project Manager. The Field Project Manager determined the dates for all sampling events.

Only one operation event sampling (September 29–30, 2010, Tropical Storm Nicole) occurred from May 1, 2009, to April 30, 2011. The sample was collected on September 30, 2010.

Flow was monitored at two inflows to the C-4 EDB at G-420 and G-422; outflow was monitored at G-421; seepage flow was monitored at pump G-420S. The wetland stage was monitored at C4SW1, C4SW2, and C4SW3 (**Figure 7**).

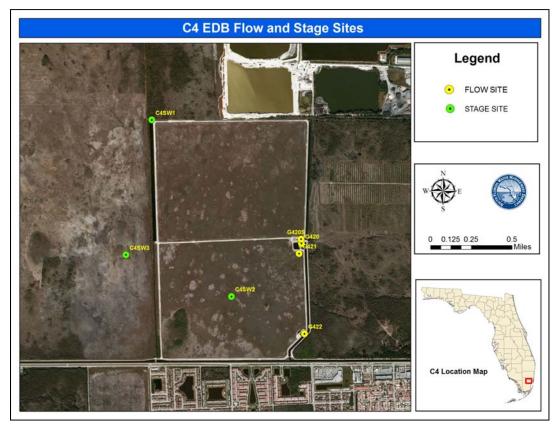



Figure 7. Flow and stage stations for the C-4 EDB.

#### Monitoring Frequencies by Site and Parameters

The C-4 EDB monitoring schedule specified in the monitoring plan is shown in **Table 3**. Samples are collected through a grab and auto-sampler collection program. Grab samples are collected weekly if flowing for the inflow and outflow structures.

#### Monitoring of Initiation Conditions and Storm Event

Construction of the C-4 EDB project was completed in May 2005 and the first biennial monitoring period started in May 2005. This is the third biennial monitoring period. The only event monitoring trip occurred on September 29–30, 2010, to monitor the condition at G-420 (**Table 5**). The auto-sampler at G-420 was not triggered during Tropical Storm Nicole. No monitoring occurred at the G-421 outflow structure because there was no flow and no water quality monitoring is required for seepage pump G-420S.

| STRUCTURE<br>CATEGORY | C-4 EDB STRUCTURE | WATER<br>QUALITY<br>SAMPLING SITE | Comments                                                                      |
|-----------------------|-------------------|-----------------------------------|-------------------------------------------------------------------------------|
| Inflow                | G-420             | G420                              | Six grab samples were collected; no sample was collected by auto-<br>sampler. |
| in mow                | G-422             | G422                              | No grab or auto-sampler was collected.                                        |
| Outflow               | G-421             | G420                              | Same water as G-420.                                                          |

**Table 5.** Water quality monitoring sites with C-4 EDB discharge structures.

Notes:

Water quality sampling sites are located on the upstream side of the structure.

#### Maintenance of Water Quality Equipment

Monitoring equipment located at the water control structures within the C-4 EDB was fully functional prior to and during flow events. Equipment calibration and general maintenance were performed monthly regardless of flow. More specific equipment maintenance, such as changing tubing for the auto-sampler, was performed quarterly regardless of flow.

## METHODOLOGY

#### Water Quality and Hydrologic Data

The sampling collection, preservation, storage, and chain-of-custody for grab and autosamplers are listed in the Water Quality Monitoring Plan, and are based on the Field Sampling Quality Manual (SFWMD, 2011). The chemical analysis procedures and QA/QC procedures are specified in the Chemical Laboratory Quality Manual (SFWMD, 2010).

The standards used to evaluate the accuracy of the rating for flow calculations are consistent with the SFWMD Standard Operating Procedures (SOP) for Flow Data Management in the District Hydrologic Database (Akpoji et al., 2003) and the U.S. Geological Survey approach as outlined by Novak (1985). Four classifications are adopted to assess a rating's accuracy. The rating is classified as (1) "excellent" when about 95 percent of the predicted flow rates are within  $\pm 5$  percent of the measured discharges, (2) "good" if they are within  $\pm 10$  percent, (3) "fair" if they are within  $\pm 15$  percent, and (4) "poor" when they are not within  $\pm 15$  percent.

#### Water Budget and TP Mass Budget Methods

The water budget and TP mass budget were calculated from May 1, 2009, to April 30, 2011. The water budget and TP mass budget were also calculated for the reportable event during Tropical Storm Nicole (September 29–30, 2010).

#### Water Budget

The water budget was calculated as follows:

 $\Delta S = I + R - ET \pm Se - O - GW(out)$ 

<u>Where:</u>

- ΔS = change in water storage=Stage<sub>t</sub> Stage<sub>t-1</sub>, Stage<sub>t</sub> is the final stage and Stage<sub>t-1</sub> is the initial stage
- I = inflow structure flows
- R = rainfall
- ET = evapotranspiration loss
- Se = seepage
- O = outflow weir volume
- GW = Groundwater GW(out) = I+R-ET -O-  $\Delta$ S(when ± Se=0)

#### TP Mass Budget

The TP mass budget was calculated as:

 $\Delta S_{tp} = I_{tp} + D_{tp} \pm Se_{tp} - O_{tp} - GW_{tp(out)}$  *Where:* 

- $\Delta S_{tp}$  = change in TP storage=TP storage change in soil, water, vegetation, unknown
- $I_{tp} = TP$  coming in through inflow pumps
- $\dot{O}_{tp} = TP$  leaving out of system through outflow pumps
- Se<sub>tp</sub> = TP pump into system through seepage pumps, no TP measurements and TP seeping out through seepage
- $D_{tp}$  = Deposition estimate based on literature review (Redfield, 2002)
- $GW_{tp} = GW$  losses or gains, unknown

Retained plus lost through groundwater flow = $\Delta S_{tp} + GW_{tp} = I_{tp} + D_{tp} - O_{tp}$ 

Daily rainfall measurements were obtained from the nearest station available at S-335, evapotranspiration (ET) was estimated using potential evapotranspiration (ET) data at S-331W (**Figure 8**), and TP load was calculated by multiplying the TP concentration with the corresponding flow. TP inflow and outflow loads were calculated using the SFWMD's Nutrient Load Program. TP atmospheric deposition was calculated by multiplying the area and deposition rate (36 mg/m<sup>2</sup>/yr from literature compiled by Redfield [2002]). The missing outflow TP concentration (auto-sampler was not triggered) at G-421 was conservatively estimated as equal to the inflow concentration at G-420, because both structures represent the same body of water.



Figure 8. Rainfall and evapotranspiration stations and detention areas.

# RESULTS

#### Flow and Water Budget

The monitoring data for the biennial period (May 1, 2009–April 30, 2011) are presented in Attachment B. Water quality data for all parameters monitored at inflow stations G-420 and G-422 are summarized in Table B-1.

The flows at each structure (Figure 9) were as follows:

- Peak flow at G-420\_P was 285 cfs and total flow was 1,642 ac-ft
- Peak flow at G-422P was 26 cfs and total flow was 454 ac-ft
- Very little outflow, 25 ac-ft, went through G-421\_S
- Peak flow at seepage pump G-420S\_P was 3.5 cfs

Total flow volumes in the C-4 EDB for the reporting period are summarized in Table 6.

The water budget components including the rainfall (**Figure 10**), ET (**Figure 11**), and storage change (**Figure 12**) are used for water budget calculation. It should be noted from **Figure 12** that the storage changed very fast during Tropical Storm Nicole due to high seepage rates in the C-4 EDB. Little water was continuously stored in the system. The water budget is summarized in **Table 7**. The inflow was the highest in September 2010, which was consistent with the rainfall input to the system.

The stage time series are shown in **Figure 13**. The stage was high during the wet season around October. The water depth reached about 1 ft (stage level 6.3 ft – ground elevation 5.1 ft) during Tropical Storm Nicole.

As shown in **Table** Table**7**, the major inflow components to the water budget is precipitation, and minor inflow component is surface inflow; the major outflow components are ET and groundwater loss (GW).






Figure 9. Flow for the C-4 EDB, (A) G-420\_O, (B) G-422\_P, (C) G-421\_S, and (D) G-420S\_P.

| Гуре     | C-4 EDB   | WATER<br>QUALITY  | FLO     |       | Water Year Fl | ow Vol (Ac-ft) | Total Flow<br>Volume |        | ghted TP<br>ation (ppb) | TP Lo  | oad (kg) | Total Load |
|----------|-----------|-------------------|---------|-------|---------------|----------------|----------------------|--------|-------------------------|--------|----------|------------|
| iype     | STRUCTURE | SAMPLING<br>SITE  | STATION | DBKEY | WY2010        | WY2011         | (acre-ft)            | WY2010 | WY2011                  | WY2010 | WY2011   | (kg)       |
| inflow   | G-420     | G420              | G420    | T0997 | 295           | 1,347          | 1,642                | 6      | 7                       | 2.3    | 11.1     | 13         |
| in       | G-422     | G422              | G422    | TS006 | 291           | 162            | 454                  | 6      | 8                       | 2.2    | 1.5      | 4          |
| O utflow | G-421     | G421 <sup>1</sup> | G421    | TA779 | 15            | 11             | 25                   | 6      | 8                       | 0.1    | 0.1      | 0.2        |

**Table 6.** Flow volume and flow-weighted mean total phosphorus concentrationsfor the C-4 EDB structures (collected May 1, 2009–April 30, 2011).

1) Water year 2011 is defined as from May 1, 2010 to April 30, 2011

2) Outflow water quality data were not available, G-420 inflow water quality data were used for G-421 outflow concentration..

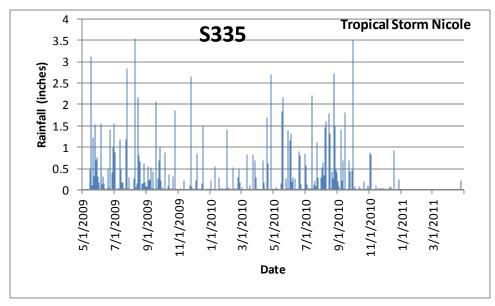



Figure 10. Rainfall for the C-4 EDB.

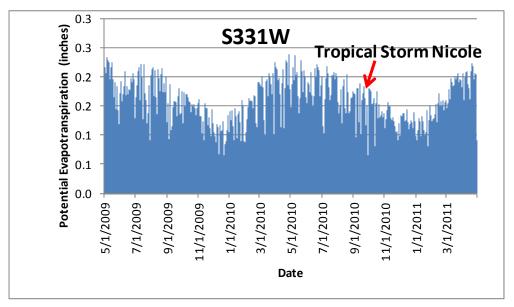



Figure 11. Evapotranspiration for the C-4 EDB.

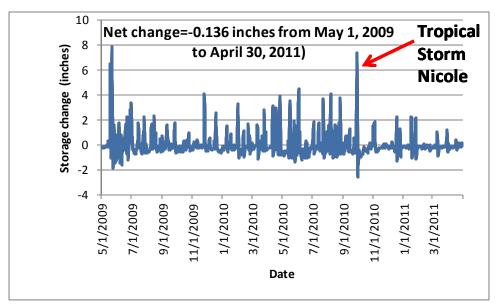



Figure 12. Storage change for the C-4 EDB.

| WY2010 |                               | WY2011 |
|--------|-------------------------------|--------|
| 66.9   | Precipitation (inches)        | 47.2   |
| 51.3   | ET (inches)                   | 52.3   |
| 8.6    | Inflow (inches) <sup>1</sup>  | 22.2   |
| 0.2    | Outflow (inches) <sup>1</sup> | 0.2    |
| 0.2    | Seepage recycle (inches)      | 0.8    |
| 24.7   | Storage change (inches)       | -26.6  |
| -0.7   | GW*                           | 43.5   |

WY2010 is defined as from May 1, 2009–April 30, 2010  $GW(out) = I + R - ET - O - \Delta S$ 

<sup>1</sup> Calculated by flow volume divided by total detention area (816 acre).

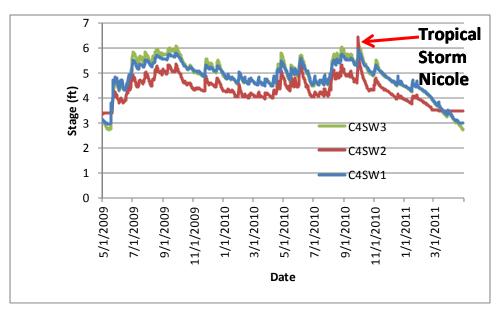
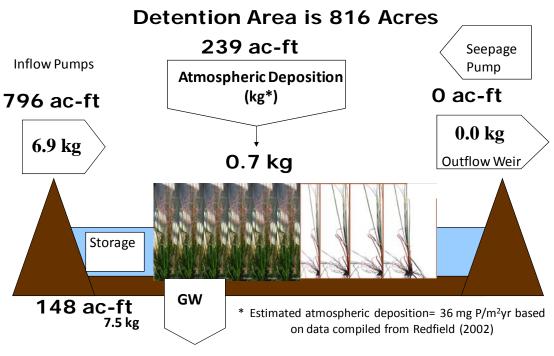



Figure 13. Stage for the C-4 EDB (ground elevation is about 5.1 ft).

# TOTAL PHOSPHORUS MASS BUDGET

The TP mass budgets are shown in **Table 8**. During Water Year 2010 (May 1, 2009–April 30, 2010) and WY2011 (May 1, 2010–April 30, 2011), auto-samplers collected no TP sample at the inflow structure G-420 pump station. As shown in **Table 5**, six grab samples were collected at the inflow detention areas (G-420), and there were no TP samples collected at the outflow structure (G-421). The TP data from inflow structure G-420 were used to estimate the outflow concentration in the mass budget calculation, because no outflow TP concentration data were available at G-421 and both structures represent the same water body.


As shown in Table B-1 of Attachment B, TP concentrations at the G-420 monitoring site were 7 ppb for the grab sample. No sample was collected at the G-422 site. The TP concentrations varied from 6 to 9 ppb with a mean TP concentration of 7 ppb, all TP concentrations were less than 10 ppb, the numerical TP Water Quality Criterion for the Everglades, for the biennial reporting period. The TP load to the C-4 EDB was 17.1 kg from inflow structures G-420 and G-422. Since TP data were not available at outflow structure G-421, the outflow TP load was calculated using the inflow TP concentration. The estimated outflow TP load was 0.2 kg. The actual outflow TP load could be less than 0.2 kg because of plant uptake of TP within the C-4 EDB. As shown in **Table 8**, the estimated atmospheric deposition (238.0 kg) is much higher than the inflow TP load (17.1 kg). It is assumed that most of the TP was retained (254.9 kg) in the C-4 EDB or lost through groundwater.

|                                                   | WY2010 | WY2011 | Total  | Tropical Storm<br>Nicole<br>(Sept. 2010) |
|---------------------------------------------------|--------|--------|--------|------------------------------------------|
| Atmospheric Deposition (kg)                       | 119.0  | 119.0  | 238.0* | 0.7                                      |
| Inflow (kg)                                       | 4.5    | 12.6   | 17.1   | 6.9*                                     |
| Outflow (kg)                                      | 0.1    | 0.1    | 0.2    | 0                                        |
| Retained plus lost through groundwater flow (kg)* | 123.4  | 131.5  | 254.9  | 7.5                                      |
| Percentage                                        |        |        | 93%    | 91%                                      |

Table 8. TP mass budget in the C-4 EDB (May 1, 2009-April 30, 2011).

Where retained plus lost through groundwater flow = $\Delta S_{tp+} GW_{tp} = I_{tp} + D_{tp} - O_{tp}$ 

The event-based (Tropical Storm Nicole) TP mass budgets are illustrated in **Figure 14** and the biennial TP mass budget is illustrated in **Figure 15**. On an event basis, surface water inflow from G-420 and G-422 for the September 2010 storm was the major TP contributor (6.9 kg) to the C-4 EDB compared to atmospheric deposition (0.7 kg) and outflow TP (0 kg). The retained TP plus the amount lost through groundwater accounted for 7.5 kg. As shown in **Figure 15**, from May 2009 through April 2011, atmospheric deposition was the major (238 kg) contributor to the TP load compared to the surface water inflow from G-420 and G-422 (17.1 kg) and outflow pump (0.2 kg). The retained TP plus the amount lost through groundwater accounted for 254.9 kg.





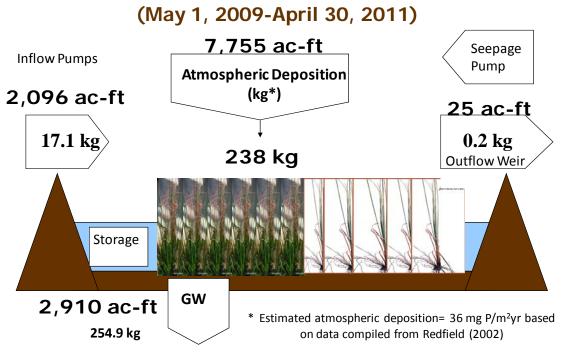



Figure 15. TP mass budget for May 1, 2009–April 30, 2011, in the C-4 EDB.

# HIGHLIGHTS

The water budget and total phosphorus mass budget calculations indicate that:

- The major inflow component to the water budget was precipitation and the minor inflow component was surface inflow; the major outflow components were ET and groundwater loss.
- The C-4 EDB was a net sink for TP for the one reportable event associated with Tropical Storm Nicole, with 91 percent TP retention plus loss through groundwater.
- The C-4 EDB was a net sink for TP for the biennial reporting period (May 1, 2010–April 30, 2011), with more than 93 percent TP retention plus loss through groundwater.
- Surface water inflow loads predominated on an event basis, but atmospheric deposition predominated for the biennial reporting period.
- The outflow TP mass load from C-4 EDB was very small (less than 0.2 kg).
- Mean TP concentrations of 7 ppb in the C-4 EDB were less than 10 ppb, which is the numerical TP Water Quality Criterion for the Everglades for the biennial reporting period.

# INCIDENTAL WILDLIFE

#### METHODOLOGY

Incidental to the ground-truthing of the aerial photographs (Task 3.2 of the statement of work), qualitative wildlife utilization observations were recorded in a field notebook. Both direct and indirect observations were recorded, including tracks, burrows, and eggs. Field observations were made at each ground-truthing station. In addition, any incidental faunal observations made while traveling between and to stations was documented. The field notebook was reviewed by the field supervisor within seven calendar days of the field event. The entries were uploaded to a Microsoft Excel spreadsheet. The page(s) from the field book was also electronically scanned into the computer (Attachment J).

#### RESULTS

Widespread wildlife was not observed at the C-4 EDB at the time of the 2011 incidental wildlife surveys (**Table 9**). This paucity of wildlife may be attributed to fire. On March 4, 2011, a wildfire occurred in the Phase II basin. A prescribed burn was also conducted in the Phase I basin on April 4, 2011. At the time of the surveys, vegetation had not sufficiently recovered and did not provide good habitat for fauna. Much of the basin remained bare and offered little to no protection from predation. Animals capable of travel outside of the C-4 EDB were dominant (i.e., birds) within the basin. Additionally, lubber grasshoppers (*Romalea microptera*) were common within 21 days of the prescribed burn. Other evidence of animal use includes large quantities of burrows used by the southern toad (*Anaxyrus terrestris*) and multiple turtle carapaces that likely burned in the fires. Live turtles were also observed in the canal surrounding the detention basin.

A previous survey (2009 Vegetative Monitoring Report) shows that this region is widely used by megafauna including deer, raccoon, and alligators. The absence of these taxa further suggests that fire may have negatively impacted habitats of this region.

| N                           | ame                  |              | Date         |              |              |  |  |  |
|-----------------------------|----------------------|--------------|--------------|--------------|--------------|--|--|--|
| Common                      | Scientific           | 4/25/11      | 4/26/11      | 4/27/11      | 4/28/11      |  |  |  |
| Common nighthawk            | Chordeiles minor     |              | $\checkmark$ |              |              |  |  |  |
| Eastern meadowlark          | Sturnella magna      |              | $\checkmark$ |              |              |  |  |  |
| Northern<br>mockingbird     | Mimus polyglottos    |              | $\checkmark$ |              |              |  |  |  |
| Killdeer                    | Charadrius vociferus |              | $\checkmark$ |              |              |  |  |  |
| Turkey vulture              | Cathartes aura       | $\checkmark$ | $\checkmark$ | $\checkmark$ | ✓            |  |  |  |
| Halloween pennant dragonfly | Celithemis eponina   |              | $\checkmark$ |              |              |  |  |  |
| Southern Toad               | Anaxyrus terrestris  |              |              | $\checkmark$ | ✓            |  |  |  |
| Lubber                      | Romalea microptera   | $\checkmark$ | $\checkmark$ | $\checkmark$ | ✓            |  |  |  |
| Golden Silk Orb<br>Spider   | Nephila sp.          |              | ~            |              |              |  |  |  |
| Turtle                      | Unknown              | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |  |

|  | Table 9. | Incidental | wildlife | observations. |
|--|----------|------------|----------|---------------|
|--|----------|------------|----------|---------------|

# WETLAND RAPID ASSESSMENT PROCEDURE

### INTRODUCTION

The Wetland Rapid Assessment Procedure (WRAP; Miller, 1997) is a rating index developed by the District to assist the regulatory evaluation of mitigation sites (created, restored, enhanced, or preserved) that are permitted through the SFWMD's Management and Storage of Surface Waters or Environmental Resource Permit processes. The objectives of WRAP are to (1) establish an accurate, consistent, and timely regulatory tool, (2) track trends over time (land use versus wetland impacts), and (3) offer guidance for environmental site plan development.

WRAP analysis for the C-4 EDB has been completed every other year starting in 2005 and has been used to track ecological trends over time. WRAP has been used consistently with its overall objectives to utilize as much information as possible and organize it in a simple but accurate rating.

## METHODOLOGY

WRAP scores a wetland on wildlife utilization, wetland overstory/shrub canopy, wetland vegetative ground cover, adjacent upland/wetland buffer, field indicators of wetland hydrology, and water quality input and treatment systems. Each variable is evaluated and scored between 0 (severely impacted) and 3 (best ecosystem function). Variables not applicable to the wetland are excluded from the final analysis. The variables are scored, totaled, and then divided by the maximum possible total score. When properly done, each variable will result in a score between zero and one. The final score is expressed as:

WRAP Score = V/Vmax

Where: V: sum of the scores for the rated variables

Vmax: sum of maximum possible scores for the rated variables

The wildlife utilization variable is a measure of observations and signs such as scat and tracks of wildlife, primarily wetland-dependent species. In addition, potential wildlife use through the presence of wildlife food sources, nesting areas, roosting areas, den trees, protective cover and landscape position is also considered. To receive a score of 3, a wetland must provide habitat for multiple trophic levels within a food chain associated with that particular system and strong evidence of wildlife utilization must be present. This evidence includes proof of use by large mammals and reptiles and abundant cover for wildlife within the wetland.

The wetland overstory/shrub canopy variable is a measure of the health and appropriateness of the wetland shrub and overstory canopy. The assessment of the canopy variable is objectively evaluated based on food resources, cover, nesting potential, and appropriateness of the vegetative community. The canopy stratum is evaluated based on the habitat type. This variable may not be applicable to freshwater marsh and wet prairie habitats where overstory/shrub canopy is typically not present (less than 20 percent).

The vegetative ground cover variable is a measure of the presence, abundance, appropriateness, and condition of vegetative ground cover within the wetland. To achieve a score of 3 for this variable, the wetland must have less than 10 percent nuisance and inappropriate plant species with no exotic species.

The adjacent upland/wetland buffer variable is a measure of the area adjacent to the subject wetland and the landscape setting of the wetland. This variable is evaluated based on the adjacent buffer size and the ecological attributes (e.g., cover, food source, roosting areas for wildlife) that

the area provides in association with the wetland that is being assessed. WRAP guidelines recommend a score of 3 for adjacent lands that are less than 10 percent nuisance species and a 2 for adjacent lands that are 75 percent or more undesirable noninvasive plant species.

The wetland hydrology variable is a measure of the hydrologic regime based on observed field indicators for the subject wetland including hydroperiod duration and magnitude. Wetland hydrology is generally interpreted using vegetative indicators. In addition, hydrologic indicators such as lichen lines, algal mats, adventitious roots, and basal scarring are also utilized. Signs of altered hydrology may include encroachment of upland and transitional plant species into the wetland. WRAP requires conditions "adequate to maintain a viable wetland system although external features may affect wetland hydrology" (Miller, 1997). To receive a score of 3, a wetland must have a natural hydroperiod and cannot be adjacent to canals, swales, berms, or wellfields.

The water quality variable of the rating index is a measure of the quality of the surface water flowing into the subject wetland from adjacent land uses (LU). The percent and type of surrounding land uses as well as any on-site pretreatment (PT) of surface waters prior to the discharge into wetlands is considered. If the wetland is totally isolated from the surrounding area by a berm or levee and water budget consists only of rainfall, a score of 2.75 should be given (Miller, 1997).

# RESULTS

A score of 1.5 was given for the wildlife utilization variable. This represents a 50 percent functional loss in this wetland. Incidental wildlife monitoring at the C-4 EDB did not find evidence of any large mammals; however, use by small birds, small reptiles, burrowing amphibians, and insects was apparent. These data suggests that the C-4 EDB score should range between 1 (minimal wildlife usage) and 2 (moderate wildlife usage). At the time of the incidental wildlife surveys and WRAP analysis, the C-4 EDB was recovering from a prescribed burn in Phase I and wildfire in Phase II. These fires dramatically reduced the habitat and food resources for wildlife. It is likely that this score would have been higher had the surveys occurred after a longer recovery period.

The wetland overstory/shrub canopy was not scored. Wet prairie covers more than 95 percent of the C-4 EDB (see the *Vegetative Monitoring Report* section). The WRAP guidelines recommend that wetlands that typically lack canopies such as wet prairies not be scored for this variable.

The wetland vegetative ground cover was given a score of 2.5. The presence of the nuisance species melaleuca and *Typha* spp. prevented a score of 3. The C-4 EDB contains less than 25 percent undesirable ground cover plant species and has had limited human impacts to the wetland; therefore the basin does exceed the WRAP requirements for a score of 2. A score of 2.5 was given for the wetland since the wetland exceeded requirements for a score of 2, but failed to meet requirements for a 3.

The adjacent upland/wetland buffer was given a score of 1.56. The C-4 EDB is bordered to the north by a large active quarry and U.S. Highway 41 (Tamiami Trail) to the south. These areas offer no ecological value to the basin as a buffer. Conversely, there are undeveloped natural areas to the east and west that provide ecological value as a buffer but are dense with melaleuca and other undesirable species. The east and west boundaries are between the two guidelines and thus were given a score of 2.5. To calculate the total score, each buffer type was multiplied by the adjoining percentage and then summed to give a total adjacent upland/wetland buffer score of 1.56.

The C-4 EDB was given of score of 2 for hydrology. The WRAP criteria met included a healthy wetland plant community and little evidence of soil subsidence. However, the C-4 EDB hydrology is controlled artificially and is surrounded by canals and berms, so it failed to meet the more stringent criteria for a score of 3.

The WRAP guidelines recommend using a score of 2.75 when the wetland is isolated and rainfall driven. C-4 EDB is not solely driven via rainfall; however, rain made up the majority of the water budget for WY2010 and WY2011. The remaining 21 percent of the water budget is flow in as surface water from the C-4 canal. Phosphorus concentrations and quantities from surface water flow were lower than the phosphorus that entered as rainfall (see the *Total Phosphorus* section). Because of the inconsequential phosphorus input from surface flow relative to rainfall, surface flow was not factored into the WRAP score for this variable.

The total WRAP score for the C-4 EDB was 0.68 (**Table 10** and **Figure 16**). In previous years, Phase I and Phase II of the C-4 EDB were evaluated separately; however, the 2011 evaluation combined both because of similarities. Mean results of Phase I and Phase II scores from previous years (2009, 2007, 2005, and baseline studies) were compared to the 2011 score. As noted in previous reports, there may be some discrepancies due to subjective influences of the different reviewers.

The 2011 score was lower than in years past, which is attributed to lower scores in two variables. First, the C-4 EDB experienced a wildfire and prescribed burn that had a deleterious effect upon the wildlife utilization score. Second, the lower score for the adjacent upland/wetland buffer may in part be explained by natural factors such as by expansion of exotics in adjacent areas and in part by differing judgments of the analysts when evaluating this variable.

|               | Baseline | 2005 | 2007 | 2009 | 2011 |
|---------------|----------|------|------|------|------|
| WRAP<br>Score | 0.74     | 0.79 | 0.81 | 0.82 | 0.68 |

| Table 10. Comparison of Wetland Rapid Assessment Procedure (WRAP) |  |
|-------------------------------------------------------------------|--|
| scores for the C-4 EDB.                                           |  |

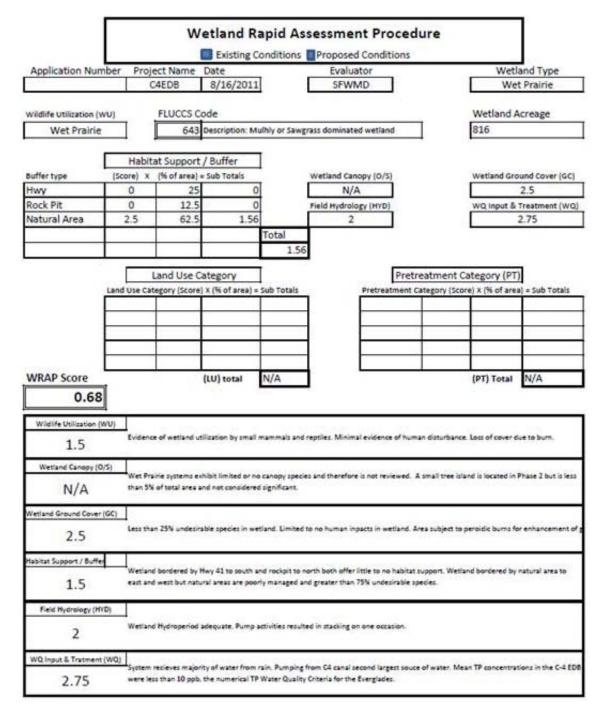



Figure 16. WRAP scoresheet for the 2011 C-4 EDB survey.

# INTENSIVE VEGETATION SURVEY

### METHODOLOGY

To monitor the changes in vegetation habitat in the C-4 EDB, the SFWMD conducts biennial intensive vegetation surveys. These surveys have been conducted since the inception of the C-4 EDB. Vegetation is surveyed at 11 sites in the basin (**Figure 17**). Each survey site was established during project baseline surveys. Before the 2011 surveys, the site had to be reestablished using GPS because the location markers had fallen into disrepair. Once the locations were reestablished, a 10x10-meter quadrate was marked. Each quadrate was surveyed for vegetative percent cover and species presence. Species were identified in the field when possible; otherwise, they were taken to the SFWMD botanist for identification. Results were recorded and compared to previous surveys to evaluate trends over time. For each site, the 2011 percent vegetative coverage was compared with the 2009 percent vegetative coverage. In addition, the change from 2009 to 2011 in the presence or absence of a species was noted. These changes were examined to look for trends in vegetation habitat of the C-4 EDB.

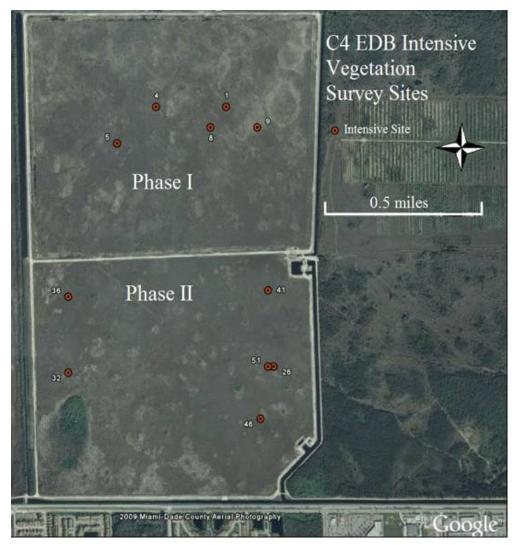



Figure 17. Intensive vegetation survey sites.

### RESULTS

Prior to the intensive vegetation surveys, a prescribed burn occurred in Phase I and a wildfire in Phase II of the C-4 EDB. The wildfire and prescribed burn happened approximately two months and one month, respectively, before intensive surveys were completed. These fires affected the vegetative percent cover. As a result, the largest increase in a category for all sites was Open Dead/Periphyton/Algae.

The low vegetative percent cover result is not a negative development for the C-4 EDB natural community. Fire is a natural part of the wet prairie ecosystem and although the percent coverage is temporarily lower, the species that were recovering were species that are expected to form such a habitat. If the intensive surveys were completed at a time when species had more time to recover, the percent vegetative cover would be much higher and in line with the previous years' surveys.

A more useful metric than percent vegetative cover may be species presence. The list of species present in the past years' surveys is almost unchanged for the 2011 survey and the dominant species in 2011 were the same as 2009 and 2007. For example, muhly grass (*Muhlenbergia capillaris*) and sawgrass (*Cladium jamaicense*) were found at all sites in 2011, an increase for muhly grass of one site and two additional sites for sawgrass in comparison with 2009. The largest decrease in plant species presence was coastal plain St. John's wort (*Hypericum brachyphyllum*), which decreased 75 percent from 2009 to 2011 and bluestem (*Andropogon* sp.), which decreased 87 percent in the same period. The largest increases in species were for spadeleaf (*Centella asiatica*), which increased 50 percent since 2009, and needleleaf witchgrass (*Dichanthelium aciculare*) and fingergrass (*Eustachys* sp.), which increased 54 percent.

Witchgrass and fingergrass are both facultative upland (FACU) plants and their presence could be explained by the dryer conditions in the C-4 EDB than in previous reporting periods. Spadeleaf is a facultative wetland (FACW) plant; its greater prevalence may be due to reduction of other species caused by fire. As other species, such as multiply grass and sawgrass mature, they will likely block further growth of spadeleaf. Melaleuca, which is listed as a category one noxious weed by the U.S. Department of Agriculture and the Florida Exotic Pest Plant Council, was found at four sites in 2011, an increase of one from 2009.

Additional intensive vegetation survey data are provided in Attachment E.

# VEGETATIVE MONITORING REPORT<sup>1</sup>

### INTRODUCTION

A six-year biennial monitoring program was established to detect, quantify, and report significant changes in vegetative communities within the Phase I (north) and Phase II (south) basins of the C-4 EDB. This section presents the results for the fourth post-construction vegetation monitoring event. As with previous studies, density and percent coverage of vegetative species within the impoundment basins were assessed and mapped. However, as a result of burns in C-4 EDB on March 5, 2011 (Phase II) and April 4, 2011 (Phase I), other parts of the project had to be scaled back. At the time of image acquisition (March 7, 2011), Phase II had already been burned, so only Phase I was compared to the previous monitoring events, which occurred in 2009, 2007, 2005 and to the pre-construction baseline studies conducted in 2003 and 2002.

The major findings from the fourth post-construction vegetation monitoring event are as follows:

- As with 2009, no living melaleuca trees were noticeable in either the aerial imagery or field photo transects. However, a field survey revealed melaleuca saplings and immature trees in the northeast half of the Phase I basin. These occurrences are isolated, surrounded by healthy wetland species, but will increase in dominance with time. The recent burns in the Phase I and Phase II raises some concern over melaleuca propagation, as it is a fire-adapted species that responds well to post fire conditions.
- Recovery from areas identified as treated for melaleuca continues, although significant relic treated melaleuca stands persist. Between 2009 and 2011, there appears to be significant increase in shrub species occupying treated areas, particularly wax myrtle (*Myrica cerifera*). A field survey conducted post fire (May 25, 2011) indicated that these species were only modestly affected by the burns on March 5, 2011 (Phase II) and April 4, 2011 (Phase I). Plants observed were already showing signs of new growth.
- In Phase I, muhly-dominated wet prairie has expanded more than any other community, and is the second largest community behind mixed wet prairie. The increase in muhly-dominated wet prairie is consistent with the 2009 trend. Low density wet prairie continues to decrease in areas adjacent to recovering wet prairie in treated melaleuca, evolving into denser wet prairie communities. As observed in previous studies, the low density wet prairie is largely associated with past overspray from melaleuca treatment. Open areas appear most persistent in wetter areas adjacent to sawgrass prairie. As noted in 2009, these open areas contained an abundance of periphyton. General patterns of Phase I, however, have not significantly changed.
- As a result of an accidental fire, over 90 percent of Phase II was burned on May 5, 2011, with the areas showing greatest effects to be those previously identified as recovering wet prairie in treated melaleuca. This is likely the result of higher fuel loading. The unburned areas were the majority of the tree island in the southwest corner (burned only around its perimeter) and muhly grass wet prairie in the northeast corner.

<sup>&</sup>lt;sup>1</sup> Adapted from a report prepared by Boodjamap, Inc., West Palm Beach, FL

Upon completion of the program, there will have been a total of four monitoring events over the six-year monitoring program. Monitoring is scheduled to occur every other year, with the first monitoring having been completed in 2005. This section summarizes the results of the fourth vegetation monitoring event, which occurred in 2011, and is the final event in the series. This work is being performed under South Florida Water Management District work order #4500059544.

This monitoring effort complies with the monitoring conditions as identified in the permits, and subsequent permit modifications, issued by the FDEP, USACE, and Miami-Dade County Department of Environmental Resource Management (DERM).

The primary vegetation monitoring objectives include:

- Monitor the density and percent cover of vegetation at the habitat level within the impoundment areas, as compared to previously reported levels
- Detect and monitor the presence, increase, or decrease of invasive exotic or nuisance species, as compared with previously reported levels

The total area of the impoundment basins is approximately 806 acres (ac). Vegetative monitoring was conducted to determine and report changes in the vegetative communities within these basins associated with activities such as water impoundment and melaleuca eradication. Original baseline (i.e., pre-construction) studies were conducted in 2002 and 2003 in accordance with original permit requirements. Since that time, a revised monitoring methodology has been developed to detect, quantify, and report potential changes in the vegetative communities. The new vegetative monitoring methodology involves the use of high resolution aerial imagery, photo interpretation, and field ground-truthing to produce a map illustrating the habitat composition within each basin. The first monitoring effort using the new methodology was completed in July 2005 and the results were documented in the Vegetative Monitoring Report dated July 2005 (SFWMD Work Order No.: C19902P-WO 05). Each subsequent report has followed the same methodology. This report, however, represents significant differences from prior studies due to recent burns in the project area. The method was altered, incorporating high-resolution photo transects as part of the ground-truthing process. Further, the scope was altered, focusing on Phase I, and removing WRAP analysis and field plot sampling (to be completed at a later date). Unlike the 2009 study, in 2011 only Phase I was compared to the prior year results to determine the types and magnitude of vegetation changes.



Figure 18. Project location of the C-4 EDB Phase I and Phase II. The C-4 EDB is composed of a north basin (Phase I) and a south basin (Phase II).

### METHODOLOGY

#### Aerial Imagery

Aerial imagery for the project was collected by Aerial Cartographics of America, Inc under work order 4600000942-WO07 on March 7, 2011. Collection involved obtaining large format RGB Infrared (IR) aerial imagery over the entire project area using an UltraCam X, S/N UCX-SX-1-10817438 camera at a 16-inch ground resolution, on one strip of 25 exposures, with 90 percent overlap between exposures along the track. The mapping limits were contained within 23 stereo models (see **Figure 19**).

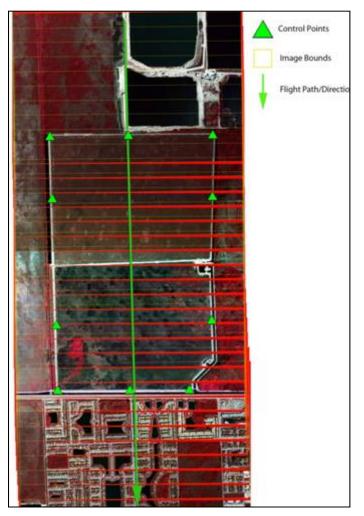



Figure 19. Aerial image bounds/control layout.

Ten ground control points were used within the project area to support the photogrammetric compilation of two-dimensional (2-D) polygons. Since the flight layout was the same as that used in 2005, 2007, and 2009, the same survey control stations were used. Each point was targeted (8x8x2-ft) prior to aerial imagery acquisition. This was completed by the SFWMD on March 2, 2011. Targets were verified and repaired where necessary.

Geo-referencing of the imagery was accomplished via direct referencing using post processed airborne global positioning systems (ABGPS) and inertial measurement unit (IMU) data and

included aero-triangulation with additional targeted ground control. Digital aero-triangulation to develop stereo models was performed by the SFWMD using Inpho Match AT software. At less than 1 ft, the aero-triangulation met the required horizontal positional accuracy of 9.84 feet at the 95 percent confidence interval (Accuracy =  $1.7308 * \text{RMSE}_h$  so  $\text{RMSE}_h = 5.77$  feet) as specified in the Federal Geodetic Data Committee (FGDC) Geospatial Positioning Accuracy Standards, Part 3: National Standard for Spatial Data Accuracy (FGDC-STD-007.3-1998) and resulted in parallax-free stereo imagery suitable for three-dimensional (3-D) feature extraction. More detailed information about Stereo-Imagery Rectification Accuracy can be found in Attachment F.

#### Aerial Photo-transects

In 2009, to assist in the visual interpretation of the aerial imagery, pre-flight ground targets were set in the field to provide a visual reference for the varying habitats. This process was altered in 2011. On March 7, 2011 [the same acquisition date as that of large format RGB Infrared (IR) aerial imagery], environmental scientists of Boodjamap, Inc., in conjunction with the SFWMD, flew four high resolution oblique photo helicopter transects over Phase I and Phase II (see **Figure 20**). Almost 700 oblique photos were collected at a height of between 5 m and 25 m above ground, by two photographers using Canon EOS 20D SLR digital cameras (8.2MP with EF-S 18-55mm f/3.5-5.6 Lens). Simultaneously, GPS coordinates were collected at one-second intervals with a Trimble ProXR differential GPS (1 meter accuracy before differential correction) and a Dell Laptop installed with ArcPad 7.1 acting as a data logger. Using the 'time' attributes in the GPS trackfile and the image time stamp in the XML header of the image files, each photo was assigned spatial coordinates based on when the photo was taken. Further, using the GPS trackfile 'course of ground' attribute, and the known position of helicopter photographers (front left hand side and front right hand side), a compass bearing was calculated for each showing its relative direction.

The resolution and coverage of high resolution oblique photo helicopter transects can provide unparalleled field data for developing community level vegetation maps. If the Environmental Scientist/GIS Specialist is familiar with the region's ecology, high resolution oblique photo helicopter transects offer an easy means to positively identify Florida Land Use, Cover and Forms Classification System (FLUCFCS) to higher order levels (III and IV) at any given location along their path. When these data are viewed at the same time as stereo imagery, they can be used to determine the unique spectral and spatial characteristics of each habitat class, making delineation more efficient and accurate. All relevant trackfiles, field photographs, and spatial data are contained in the digital files accompanying this document.

As a result of the April 4, 2011 (Phase I) burn, it was apparent that data from the high resolution oblique photo helicopter transects would be necessary to accuracy check the habitat classification. Points used to perform the accuracy check were not used as part of the mapping process. These data are discussed in the *Quality Control* section of this appendix.

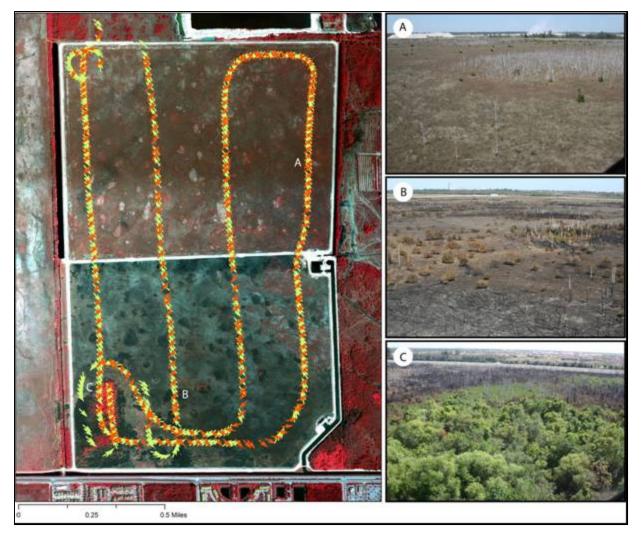



Figure 20. High resolution oblique photo transects. (A) Patchy muhly wet prairie adjacent mixed/recovering prairie, Phase I; (B) burned recovering wet prairie adjacent burned prairie with sparse wax myrtle, Phase II; (C) tree island, surrounded by burned recovering wet prairie, Phase II.

#### Ground Survey

Although the project scope was scaled back as a result of burns, a simple field assessment was deemed necessary to develop a better prospective of C-4 EDB's topography, hydrology, wildlife, and returning community vegetation. On May 25, 2011, a tour was made of both Phase I and Phase II. Using a Canon EOS Rebel T3i Digital SLR Camera (18 MP with EF-S 18-55mm f/3.5-5.6 IS Lens) attached with a JOBO photoGPS tracking logger (~10m horizontal accuracy). More than 450 field photos were taken as part of an area assessment (**Figure 21**). The imagery was not formally collated, but ground-based field photographs and associated spatial information are contained on the digital files accompanying this report.

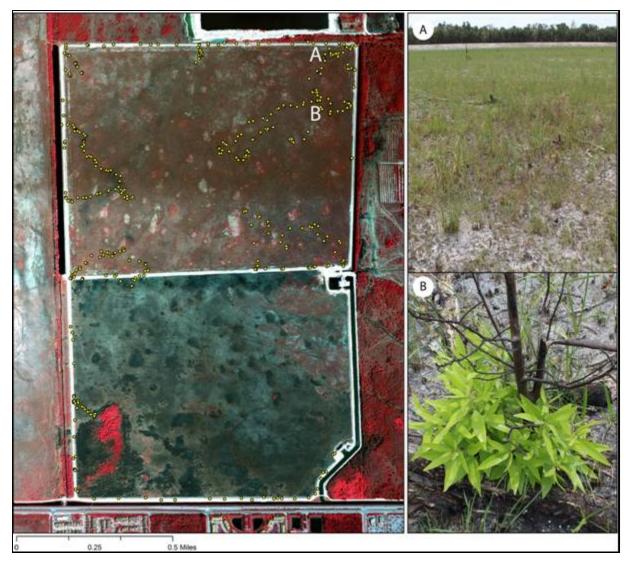



Figure 21. Field ground survey points.

## Mapping

Data gathered from the previous monitoring events, helicopter transects, and the ground survey, combined with the FLUCFCS, provided a generalized list of habitat types for the C-4 basin, which were used in the mapping process. For this project, the minimum mapping unit is 10 x10 m (~32.8x32.8 ft or roughly 0.01 hectares). A softcopy photogrammetric workstation was used for the initial mapping. This workstation is a PC-based dual processor system running on Windows 7. The compilation software used was DATEM Summit Professional, which operates on top of AutoCAD Map 3D. Each habitat polygon on the map was captured stereoscopically using CIR imagery, and attributed in AutoCAD as 2-D vectors in accordance with the FLUCFCS National Map Accuracy Standards for 1-inch to 100-foot mapping. Subsequent to the vector collection, the data were combined into a single AutoCAD DWG file type and exported to ArcGIS 9.3. This file was incorporated into an ArcGIS geodatabase for final editing and topology clean up.

Many of the ecotones or habitat breaks observed in the field were distinct when viewing the imagery stereoscopically and in normal 2-D view. For example, low density recovering wet

prairie, recovering wet prairie within treated melaleuca heads, the scraped area of the perimeter of Phase I, and the native tree islands in Phase II were all visually distinct. Some ecotones, however, were more complex and not easily delineated. High heterogeneity of sawgrass-dominated wet prairie, mixed wet prairie, and to some extent lower percentage muhly-dominated wet-prairie, often displayed a gradual blending of adjacent communities rather than a hard boundary. To separate these blended ecotones, high resolution oblique photo helicopter transects were used to develop unique spectral and spatial signatures. Spectral and spatial characteristics are discussed in the *Customizing the FLUCFCS Code* section.

#### Customizing the FLUCFCS Code

The FLUCFCS was used to classify the vegetation communities present in the C-4 EDB and to identify the habitat types during the mapping process. A modified FLUCFCS code system (**Table 11**) was used to account for the variations in the observed wet prairie communities. As in 2009, a pre-existing 3<sup>rd</sup> order classification was used where appropriate (e.g., 617-Mixed Wetland Hardwoods). For 4<sup>th</sup> order classification and above, letters were used in place of numbers for ease of utilization and quick interpretation. Consistent with 2009, the letters used in this higher order classification of this coding can be examined by viewing the various wet prairie communities and their photos in **Table 12**.

Five different habitat classes were added to the FLUCFCS codes used in 2009. The class 643rms (recovering wet prairie/shrub in treated melaleuca) was added to account for the emerging co-dominance of shrubs in recovering areas. The class 641t (cattail marsh) was added as it was now possible, with aid of 2011 imagery and field data, to positively identify *Typha* sp. The final three changes were added to accommodate for the burned vegetation in Phase II. Classes 643rm (recovering wet prairie in treated melaleuca), 643s (mixed wet prairie) and 631 (wetland shrub), all had the suffix 'burn' added where appropriate (e.g., 643rmburn for burned recovering wet prairie in treated melaleuca). It should be noted that in 2005 there were thirteen FLUCFCS used, ten classes in 2007, nine in 2009 and thirteen in 2011. **Table 11** summarizes the FLUCFCS codes used in 2005, 2007, 2009 and 2011.

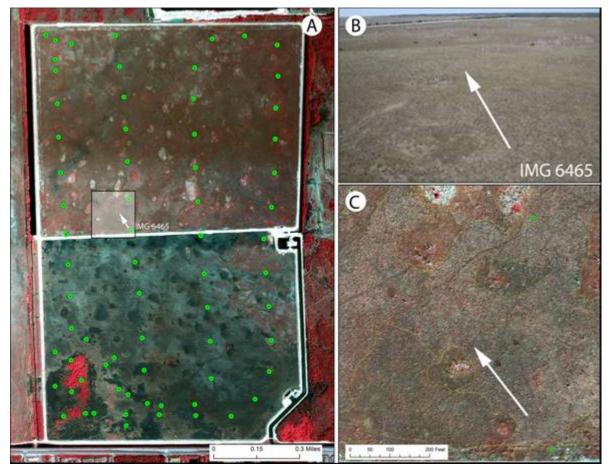
| FLUCFCS<br>Code | Description                                              | 2005 | 2007 | 2009 | 2011 | Notes                                                                       |
|-----------------|----------------------------------------------------------|------|------|------|------|-----------------------------------------------------------------------------|
| 617             | Tree Island                                              | Х    | Х    | Х    | Х    |                                                                             |
| 619m            | Melaleuca                                                | х    | х    |      |      | None observed in 2011                                                       |
| 619mca          | Melaleuca-Casuarina Mix                                  | Х    |      |      |      | None observed in 2011                                                       |
| 619mt           | Treated Melaleuca                                        | Х    | Х    | Х    |      |                                                                             |
| 631             | Wetland Scrub                                            | Х    |      | Х    | Х    |                                                                             |
| 631burn         | Wetland Scrub                                            |      |      |      | Х    | Limited to Phase II in 2011                                                 |
| 641t            | Cattail Marsh                                            |      |      |      | Х    |                                                                             |
| 643cs           | Sawgrass Wet Prairie                                     | Х    | Х    | Х    | Х    |                                                                             |
| 643ms           | Muhly Wet Prairie                                        | Х    | Х    | Х    | Х    |                                                                             |
| 643rm           | Recovering Wet Prairie in<br>Treated Melaleuca           |      | х    | х    | х    |                                                                             |
| 643rmburn       | Burned Recovering Wet<br>Prairie in Treated<br>Melaleuca |      |      |      | х    | Limited to Phase II in 2011                                                 |
| 643rms          | Recovering Wet Prairie<br>/Shrub in Treated<br>Melaleuca |      |      |      | х    | Areas showing co-dominant prairie/shrub mix in 2011                         |
| 643s            | Mixed Wet Prairie                                        | х    | х    | х    | х    | Combined 643s and 643xs into one<br>class in 2007, took name of Mixed<br>WP |
| 643sburn        | Burned Wet Prairie                                       | х    | х    |      | х    | Limited to Phase II 2011                                                    |
| 643sl           | Scraped Wet Prairie                                      | Х    | Х    | Х    | Х    |                                                                             |
| 643t            | Treated Wet Prairie                                      | х    |      |      |      | None observed in 2011                                                       |
| 643xs           | General Wet Prairie                                      | х    |      |      |      | Code became 643s description changed                                        |
| 643xsl          | Low Density Wet Prairie                                  | Х    | Х    | Х    | Х    |                                                                             |

 Table 11. FLUCFCS code comparison for 2005–2011.

#### Table 12. FLUCFCS codes used for 2011 mapping, habitat descriptions, and representative habitat photos.

| (617) Mixed Wetland Hardwoods<br>This category is reserved for those wetland hardwood<br>communities which are composed of a large variety of hardwood<br>species like ficus and pond apple ( <i>Annona glabra</i> ) tolerant of<br>hydric conditions. The tree islands occurring in the southwest<br>corner of Phase II have been given this designation. This code<br>has been used since the 2005 mapping.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 631 Wetland Shrub<br>This new emerging community has woody vegetation less than<br>6 m (20 ft) tall with no true canopy. The species include shrubs<br>like wax myrtle ( <i>Myrice cerifera</i> ), young trees like pond apple<br>and red bay ( <i>Persea borbonia</i> ). This type of wetland shrub<br>mixture has been known to represent a successional stage leading<br>to 617 Mixed Wetland Hardwoods. Spectrally, shrub areas have<br>distinctly high IR values.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (643s) Mixed Wet Prairie<br>Wet prairie (643) is defined as predominately grassy vegetation<br>on hydric soils and usually distinguished from marshes by having<br>less water and shorter herbage. The "s" designation used here<br>signifies that there is a shrubby component to the community<br>with densities varying between 1 and 49 percent, but more<br>typically between 1 and 10 percent. The main shrub components<br>are wax myrtle with a high percentage of other vegetation<br>species. The other species generally include muhly grass and/or<br>sawgrass in amounts not exceeding 50 percent. Dog fennel and<br>bluestem are also prevalent in this habitat type. This generalized<br>classification of 643s was used on a significant portion of the<br>mapping in Phase I and Phase II. This class was broken into two<br>separate classes in 2005 and merged into the 643s in the 2007<br>mapping effort. Spectrally mixed prairie can vary greatly<br>dependent on the species composition, but typically it is highly<br>textured due to its high heterogeneity. Spatially it often occupies<br>a transitional zone between the wetter sawgrass dominant wet<br>prairie and higher elevation muhly dominant wet prairie. |

#### Table 12. Continued.


| (643cs) Sawgrass Wet Prairie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| This variation of 643s is dominated by sawgrass (50 percent or greater cover). This code been used since the 2005 mapping effort. In 2009, dormant sawgrass interspersed with some living sawgrass in Phase I was identified as produced a unique bluish hue. This could not be supported with 2011 data. Typically, sawgrass has a mid-range IR signature for a marsh grass. It is higher in absorption than sedges ( <i>Juncus</i> sp.), bluestem ( <i>Andropogon</i> sp.) and muhly ( <i>Muhlenbergia capillaris</i> ), because of its broader leaves, but pails when compared to fleshier leaved plants like dog-fennel ( <i>Eupatorium capillifolium</i> ) and coinwort ( <i>Centella asiatica</i> ). Texturally, sawgrass dominant wet prairie varies almost as much as mixed wet prairie, primarily because dominance tends to be not much greater than 50 percent. Spatially it is located at lower, wetter elevations. |
| (643ms) Muhly Wet Prairie<br>This variation of 643s is dominated by muhly grass (50 percent<br>or greater cover). This code has been used since the 2005<br>mapping effort. Spectrally, muhly wet prairie varies dependent<br>on percentage dominance. In areas where muhly is highly<br>dominant (>75 percent), it has a tall, textured, white appearance<br>(high reflectance). In locations where dominance falls to below<br>75 percent (often lower and wetter), only the peaks are white,<br>with the majority being grey or very dark.                                                                                                                                                                                                                                                                                                                                                                                   |
| (643rm & 643rms) Recovering Wet Prairie in Treated Melaleuca<br>Stands & Recovering Wet Prairie /Shrub in Treated Melaleuca<br>This is a relatively new wet prairie community that is arising in<br>areas that were treated melaleuca. This class is defined by<br>standing and fallen dead melaleuca within the site, which is<br>contributing to the unique vegetation mix in these areas. As a<br>result of this, there is a high percent cover of dog fennel and<br>bluestem with shrubby vegetation like wax myrtle. Where<br>shrubby vegetation approaches co-dominance with herbaceous<br>species (talller, high IR), the code becomes 643rms.                                                                                                                                                                                                                                                                           |

| (643sl) Scraped Wet Prairie<br>This area is a variation of 643s and is a result of earthworking<br>activities in the basin. As a result of being scraped it is<br>significantly lower in elevation than other areas and has a high<br>tendency to be wetter than anywhere else in the project area. It<br>has high amounts of open space with only 10-20 percent of plant<br>coverage, which is mostly herbaceous.                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (643xsl) Low-Density Wet Prairie<br>This low-density and lower stature variation of 643s generally<br>occurs in areas that had been treated wet prairie, although is also<br>present in lower, wetter elevations adjacent to sawgrass wet<br>prairie. In 2011, as with 2009 and 2007, this class is defined by<br>having at least 15–30 percent of open space composed of bare<br>ground or periphyton. The class was used in the 2005 mapping to<br>designate areas with 41 percent or greater open space. In addition<br>there is a mix of low stature vegetation like southern breakrush<br>( <i>Rhynchospora microcarpa</i> ), spreading breakrush ( <i>Rhynchospora<br/>divergens</i> ), dog fennel ( <i>Eupatorium capillifolium</i> ), coinwort<br>( <i>Centella asiatica</i> ), and narrowleaf yellowtops ( <i>Flaveria<br/>linearis</i> ). |
| (641t) Cattail Marsh<br>Marsh (641) contrasts wet prairie (643) in that it has a longer<br>hydroperiod. Cattail dominated marsh has a greater than<br>50 percent coverage of <i>Typha</i> sp. These areas are located<br>exclusively adjacent to levees, where earthworking activities<br>have often created marsh like habitat.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (643rmburn, 643sburn, 631burn) Burn suffix<br>The 'burn' suffix designates those areas in Phase II that have been<br>burned. Intuitively, burned areas are dark to black in all bands.<br>The darkest areas are where relic treated melaleuca have burned<br>'hot' due to high fuel loads.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

#### Table 12. Continued.

#### Quality Control

In prior analyses (2005, 2007, and 2009) the scope of work required that all vegetation categories delineated in the final maps must be classified at 90 percent accuracy or higher. However, due to an accidental burn in Phase II on March 7, 2011, and a controlled burn in Phase I on April 4, 2011, the Quality Control method for accuracy had to be modified as it was not possible to create a quantitative Confusion Matrix. As a compromise, the SFWMD agreed to a qualitative assessment using high-resolution oblique photo transects collected on March 7, 2011 (see *Methodology* section). Prior to classification points were selected from the transects, representing community vegetation at approximately 200 yard intervals, and held back for qualitative assessment. Once the first draft of the habitat mapping was completed, a total of 106 field photos were described and classified using FLUCFCS codes, visited spatially in GIS using the corresponding field point (**Figure 22**), and assessed as to determine whether the map product accurately represented the true landscape (**Table 13**). Of the 106 points surveyed, 222 unique habitat locations were identified from field photos, spanning all 13 available FLUCFCS codes. Detailed information about ground-truthing results using the high-resolution helicopter photos can be found in Appendix G.



**Figure 22.** High resolution transect ground controls and photo point example. (A) Transect quality point overview, (B) photo example of muhly wet prairie and interface between mixed prairie and muhly, (C) close-up of ortho-image inset, including class boundaries.

| FLUCFCS Code | Description                                        | Incidences |
|--------------|----------------------------------------------------|------------|
| 617          | Tree Island                                        | 10         |
| 631          | Wetland Scrub                                      | 1          |
| 631burn      | Burned Wetland Scrub                               | 1          |
| 641t         | Cattail Marsh                                      | 3          |
| 643cs        | Sawgrass Wet Prairie                               | 10         |
| 643ms        | Muhly Wet Prairie                                  | 33         |
| 643rm        | Recovering Wet Prairie in Treated Melaleuca        | 18         |
| 643rmburn    | Burned Recovering Wet Prairie in Treated Melaleuca | 37         |
| 643rms       | Recovering Wet Prairie /Shrub in Treated Melaleuca | 4          |
| 643s         | Mixed Wet Prairie                                  | 36         |
| 643sburn     | Burned Wet Prairie                                 | 48         |
| 643sl        | Scraped Wet Prairie                                | 10         |
| 643xsl       | Low Density Wet Prairie                            | 11         |

| Table 13. FLUCFCS codes | s observed in 201 <sup>2</sup> | l in transect grou | nd controls |
|-------------------------|--------------------------------|--------------------|-------------|
|                         |                                | i in transcet grou |             |

#### Post Classification Quality Control

In addition to accuracy quality control, the final mapping product was evaluated to ensure there were no slivers, overlaps, gaps, and that each polygon had its own centroid. Topology was evaluated and corrected using topology and editing tools in ArcGIS 9.3.

#### RESULTS

#### **Vegetative Monitoring Accuracy**

As described previously, 13 different FLUCFCS codes were developed for the habitat mapping effort based on aerial interpretation and ground-truthing activities. The habitat map developed for this monitoring event is presented in Attachment H. Habitats are delineated with colored, semi-transparent polygons corresponding to their respective FLUCFCS code. The color schemes used are similar to those used in 2007–2009. Color-infrared ortho-images created from the stereo aerials are used as a backdrop for the map so their texture, shape, etc. can be seen due to the transparency of the polygons.

Many techniques have been developed to measure the uncertainty in mapping land classifications based on remotely sensed data. Common practice to select a sample of locations and to compare the classes assigned to each location with some source of higher accuracy, is usually field plots. As stated previously, vegetation burns made traditional accuracy assessment via in-field assessment impossible. Fortunately, high resolution oblique photos (high resolution oblique photo transects) were collected by Boodjamap, Inc. and the SFWMD from a helicopter along a traverse on March 7, 2011 (post Phase II burn, pre Phase I burn). These oblique photos were used to positively identify FLUCCS habitat coverage.

Of the 106 transect ground-truthing stations, all but 2 were found to match well with the designated habitat classification. These two are related to the classification of low density wet prairie (FLUCFCS 643xsl). Problems with classifying 643xsl were due to high IR in low statue species like coinwort (*Centella asiatica*) in recovering prairie. This was corrected post quality assessment and the map updated.

#### Habitat Quantification

The second portion of the mapping analysis was quantification of the habitats. Habitat polygon layers were separated by basin (Phase I and II) in ArcMap 9.3 and the acreage calculated on the dissolved habitat classes. The attribute tables were then transferred to Microsoft Excel to compute percent coverage for comparison to 2009 Habitat Quantification values. The total acreage of each habitat type and percent of the total impoundment area is given in **Table 14**. **Table 15** provides a comparison showing the percent coverage of each habitat in Phase I from 2011 and 2009. As previously stated, only Phase I was calculated because the March 5, 2011burn in Phase II.

Most noteworthy is the continued increase of muhly wet prairie in Phase I. This trend has continued from 2007. Conversely, there has been a reduction in wetter sawgrass wet prairie and mixed prairie classes. Recovering wet prairie/shrub in treated melaleuca has seen a modest decrease in coverage, as some areas have transitioned to the higher shrub component class 643rms. In Phase II, most dramatic is the percentage of area burned. Burned classes in Phase II account for more than 90 percent of the total area. Additional review of these changes is included in the *Discussion* section.

| FLUCFCS   |                                                       |              | PHASE I   | PHASE II | PHASE II  |
|-----------|-------------------------------------------------------|--------------|-----------|----------|-----------|
| CODE      | HABITAT                                               | PHASE I (ac) | (% Cover) | (ac)     | (% Cover) |
| 617       | Tree Island                                           | -            | -         | 8.15     | 2.10      |
| 619mt     | Melaleuca-Treated                                     | -            | -         | -        | -         |
| 631       | Wetland Shrub                                         | 0.44         | 0.11      | 0.94     | 0.24      |
| 631burn   | Burned Wetland Scrub                                  | -            | -         | 0.09     | 0.02      |
| 641t      | Cattail Marsh                                         | 1.75         | 0.42      | -        | -         |
| 643cs     | Sawgrass-Wet Prairie                                  | 50.22        | 12.05     | -        | -         |
| 643ms     | Muhly-Wet Prairie                                     | 88.37        | 21.20     | 26.33    | 6.76      |
| 643rm     | Recovering Wet Prairie in Treated<br>Melaleuca        | 25.43        | 6.10      | 1.43     | 0.37      |
| 643rmburn | Burned Recovering Web Prairie in<br>Treated Melaleuca | -            | -         | 78.57    | 20.18     |
| 643rms    | Recovering Wet Prairie/Shrub in<br>Treated Melaleuca  | 1.88         | 0.45      | -        | -         |
| 643s      | Mixed Wet Prairie                                     | 136.69       | 32.78     | 3.15     | 0.81      |
| 643sburn  | Burned Mixed Wet Prairie                              | -            | -         | 270.16   | 69.40     |
| 643sl     | Scraped-Wet Prairie                                   | 25.04        | 6.00      | 0.49     | 0.13      |
| 643xsl    | Low Density                                           | 87.08        | 20.89     | -        | -         |
|           | TOTAL                                                 | 416.90       | 100       | 389.31   | 100       |

| Table 14. | 2011 | FLUCFCS | habitat | area a  | and r      | oercent | coverage. |
|-----------|------|---------|---------|---------|------------|---------|-----------|
|           |      |         |         | a. oa a | ·· · • · · |         | 00.0.ago. |

| FLUCFCS | HABITAT                                                 | 2011    | PHASE I   | 2009 F  | PHASE I   |            |
|---------|---------------------------------------------------------|---------|-----------|---------|-----------|------------|
| CODE    |                                                         | (Acres) | (% Cover) | (Acres) | (% Cover) | (% Change) |
| 619mt   | Melaleuca-Treated                                       | -       | -         | 0.12    | 0.03      | -0.03      |
| 631     | Wetland Shrub                                           | 0.44    | 0.11      | 0.70    | 0.17      | -0.06      |
| 641t    | Cattail Marsh                                           | 1.75    | 0.42      | -       | -         | +0.42      |
| 643cs   | Sawgrass-Wet Prairie                                    | 50.22   | 12.05     | 86.00   | 20.57     | -8.52      |
| 643ms   | Muhly-Wet Prairie                                       | 88.37   | 21.20     | 38.13   | 9.12      | +12.08     |
| 643rm   | Recovering Wet Prairie in treated Melaleuca             | 25.43   | 6.10      | 26.54   | 6.35      | -0.25      |
| 643rms  | Recovering Wet<br>Prairie/Shrub in treated<br>Melaleuca | 1.88    | 0.45      | -       | -         | +0.45      |
| 643s    | Mixed Wet Prairie                                       | 136.69  | 32.78     | 186.35  | 44.56     | -11.78     |
| 643sl   | Scraped-Wet Prairie                                     | 25.04   | 6.00      | 4.27    | 1.02      | +4.98      |
| 643xsl  | Low Density WP                                          | 87.08   | 20.89     | 76.04   | 18.18     | +2.71      |
|         | TOTAL                                                   | 416.90  | 100       | 418.16  | 100       |            |

| Table 15. Phase | habitat acre | eage and | percent | cover for | 2011 | and 2009. |
|-----------------|--------------|----------|---------|-----------|------|-----------|
|                 |              |          |         |           |      |           |

\* Minor differences in the total area for each basin are due to variations in how the perimeter of the basin is mapped (i.e. from the levee road vs. from the bottom of the levee).

#### Change Detection between 2009 and 2011 in Phase I

Change detection is analysis of the same geographic area at different times to determine habitat change (Attachment I). To calculate change detection in Phase I from 2009 to 2011, an overlay union was performed in ArcGIS and the results were tabulated. Within Phase I, approximately 56 percent of the total area remains unchanged from 2009 to 2011 (**Table 16**). Of the remaining approximately 44 percent, about 36 percent can be attributed to seven class transitions (**Table 17**). The greatest transition is from mixed prairie in 2009 to multiply prairie in 2011 (~13 percent).

Table 16. Class agreement between 2011 Phase I and 2009 Phase I.

| FLUCFCS 2011 | FLUCFCS 2009 | Acre   | % Cover (2011) |
|--------------|--------------|--------|----------------|
| 643cs        | 643cs        | 36.15  | 8.67           |
| 643rm        | 643rm        | 17.74  | 4.26           |
| 643s         | 643s         | 93.50  | 22.43          |
| 643sl        | 643sl        | 3.39   | 0.81           |
| 643xsl       | 643xsl       | 35.82  | 8.59           |
| 643sl        | 643xsl       | 14.00  | 3.36           |
| 643ms        | 643ms        | 30.60  | 7.34           |
| Тс           | otal         | 231.20 | 55.46          |

| FLUCFCS 2011 | FLUCFCS 2009 | Acre   | % Cover (2011) |
|--------------|--------------|--------|----------------|
| 643cs        | 643s         | 8.53   | 2.05           |
| 643ms        | 643s         | 52.97  | 12.71          |
| 643s         | 643cs        | 16.66  | 4.00           |
| 643s         | 643xsl       | 17.66  | 4.24           |
| 643sl        | 643s         | 6.45   | 1.55           |
| 643xsl       | 643cs        | 27.16  | 6.50           |
| 643xsl       | 643s         | 19.39  | 4.65           |
| 0            | ther         | 36.90  | 8.84           |
| Т            | otal         | 185.72 | 44.54          |

| Table 17. Class disagreement between 2011 | Phase I | and 2009 Phase I. |
|-------------------------------------------|---------|-------------------|
|-------------------------------------------|---------|-------------------|

#### DISCUSSION

#### General Habitat Changes

As shown in Attachments H and I, in the Phase I basin, the general trend of wetter sawgrass prairie in the northwest to higher elevation mixed wet prairie and muhly wet prairie communities in the south/southeast is as it appeared in 2005, 2007, and 2009. The most significant changes to occur in Phase I appear to be (1) the expansion of muhly wet prairie at the exception sawgrass and mixed prairie, (2) the appearance of large patches of cattail (*Typha* sp.) in the scrapped areas adjacent to the levee, (3) increased colonization of shrubs in relic treated melaleuca stands, and overall increase in the density of shrubs, and (4) shrinkage of individual recovering wet prairie melaleuca patches as treated melaleuca decompose. Some of these changes are naturally occurring, yet some are the result of an improvement in interpretation through superior stereo image quality.

As over 90 percent of Phase II had burned on March 5, 2011 (shortly prior to image acquisition), no attempt was made to compare community changes with 2009 data. It is worth noting, however, that the tree island in the southwest part of Phase II only incurred minor fire damage at its periphery. Further, unburned multiply wet prairie in northeast Phase II shows no change from 2009.

#### Muhly Wet Prairie/Mixed Wet Prairie Transition

Phase I has undergone substantial muhly wet prairie expansion since 2009, creeping further northward. Overall, there was a net gain of 50.24 (88.37-38.13) acres of muhly wet prairie in Phase I, more than double the 2009 value (38.13 acres). Much of the area taken over by muhly wet prairie was previously classified as mixed wet prairie (52.97 acres), although 6.64 acres has transitioned from muhly wet prairie to mixed wet prairie. Gains and losses in other classes are minor and evenly distributed.

Based on the 2009 report, the transition of mully to mixed, and mixed to mully, appears to be in constant flux. In 2009, the emergence of other vegetation, like bluestem, sawgrass, and many other species, was attributed to creating a mixed wet prairie environment. In 2011, mully wet prairie in the east of Phase I, although more mixed than mully communities in the western half of Phase I, was clearly shown in photo transects to be composed of mully percentages well in excess of the 50 percent threshold.

#### Sawgrass Wet Prairie Change

The expansion of sawgrass wet prairie observed from 2007 to 2009 was not repeated in 2011. Sawgrass wet prairie decreased by almost 36 acres in 2011, with the majority of losses occurring to low density prairie (27 acres) and mixed prairie (8 acres). If is difficult to determine if the reduction in sawgrass coverage is a real transition, or the result of improved classification through improved imagery and increased ground-truthing. A review of the original 2009 stereo images shows that there has been some shift to more open prairie in the north, but without knowing the disturbance patterns (e.g., fire) over the last two years, it is impossible to postulate a cause. The transition from sawgrass to mixed is less clear. Sawgrass wet prairie has a wide ecotone, transitioning gradually from east to west. Without the improved spectral characteristics of 2011 UltraCam X imagery (native 16-bit digital with IR, R, G, and B bands), and large volume of oblique images, identifying this interface would be extremely challenging.

#### Melaleuca Habitat

As with 2009, the only invasive species of immediate concern in the project area is melaleuca. Melaleuca chemical treatment appears to have been effective in removing almost all live trees, with no live trees identified in the stereo imagery. Field work on May 25, 2011, however, noted sporadic melaleuca saplings in treated melaleuca stands in the northeast corner of Phase I. Proximity to large live melaleuca stands to the north and west of Phase I, and west of Phase II, indicate that this melaleuca will require constant management. Further, recent burns could add to melaleuca propagation if soil contains an existing seed bank.

#### Recovering Wet Prairie in Treated Melaleuca

Since 2007, previous reports have shown a significant reduction in recovering wet prairie in treated melaleuca as these areas transition to low density or mixed prairie. **Table 15** appears to show that between 2009 and 2011, this trend had halted, with recovering wet prairie in treated melaleuca showing no appreciable decrease. Further examination in change detection maps, however, appears to show that the area map is misleading and that this trend is indeed continuing. The boundaries of the larger recovering wet prairie polygons have shrunk, but this has been counter balanced with increased delineation of smaller treated areas elsewhere. The greatest increase in recovering wet prairie is found to come from mixed prairie (4 acres). Examining these areas in the 2009 stereo imagery shows that these areas existed in 2009, but were not mapped.

#### Cattail Marsh

As already stated, cattail species (southern cattail, *Typha domingensis* and broadleaf cattail, *T. latifolia*) were mapped for the first time in 2011. These are not included on the FEPPC or noxious plant list, but must be monitored by the regulations of the permit. In the 2009 monitoring effort, small amounts of cattail were witnessed in the scraped down wet prairie areas (643sl) of Phase I. In 2011, 1.75 acres of cattail was identified, over 16 different locations. As with 2009, each occurrence was confined to the habitat class, 643sl. Field work on May 25, 2011, determined that like the 2009 study, that cattail was unlikely to extend beyond the edge of the levee. Scraped-down wet prairie is most likely subject to regular human disturbance, resulting in wetter conditions that do not extend into the open prairie.

#### CONCLUSIONS/RECOMMENDATIONS

Overall, the technique of remote sensing as a method of tracking vegetation in the C-4 EDB is highly successful, with stereoscopic aerial interpretation deemed effective in delineating the major communities. In 2011, the photo interpretation process was greatly enhanced by collecting high resolution oblique photo transects prior to classification. These photo transects offered an

unprecedented number of ground-truthing stations for the C-4 EDB, significantly reducing the amount of time needed for revision and improvement. Unlike 2009, many of the complex land cover questions did not require reassessment as often there was an available oblique image to guide the stereo delineation. Improved spectral characteristics of stereo imagery also contributed to an improved map product. The UltraCam X, S/N UCX-SX-1-10817438 camera, has superior spectral resolution over the film photography used in previous studies (IR, Red, Green and Blue spectra as opposed to just IR, Red and Blue). Further, since it is natively digital, uniformity of color is also greatly improved as it is not subject to loss of spectral sensitivity through film deterioration (i.e., IR film is fragile and deteriorates with increased temperatures) or analog to digital scanning.

As with 2009, there has been an increase in the density of muhly wet prairie (643ms) communities in Phase I. It is unclear if the expansion of muhly is a true sign of community change, or the result of a natural fluctuating system. Similarly attention should be also be paid to the contraction of sawgrass wet prairie (643cs) to see if this is a real change, or simply the result of improved delineation as a result of improved imagery and increased ground-truthing. It is possible that the increase in muhly, the increase in shrubs, and the decrease in sawgrass, indicate a drying out of Phase I and a transition to a Phase II-like community structure.

C-4 is located adjacent to live melaleuca stands. Although largely removed from Phase I, melaleuca saplings still persist, and windblown colonization is unavoidable without periodic retreatment. Fire has been identified as contributing to melaleuca seed propagation. Monitoring treated areas post-fire would give an indication to the level of the melaleuca seed bank, and whether fire should be carefully controlled.

### LITERATURE CITED

- Akpoji, G.A., E. Damisse, M. Imru, C. James and N.D. Mtundu. 2003. Standard Operating Procedures for Flow Data Management in the District's Hydrologic Database. Hydrology and Hydraulics Division, Environmental Monitoring and Assessment Department, South Florida Water Management District, West Palm Beach, FL.
- Alden, P., R. Cech and G. Nelson. 1998. National Audubon Society Field Guide to Florida. Alfed A. Knopf, New York.
- Cyriacks Environmental Consulting Services, Inc., Consulting Engineering and Science, Inc. and Woolpert LLP. 2005. C-4 Phase Emergency Detention Impoundment, Vegetative Monitoring Report. Prepared for the South Florida Water Management District, West Palm Beach, FL.
- Cyriacks Environmental Consulting Services, Inc., Consulting Engineering and Science, Inc. and Woolpert LLP. 2007. C-4 Phase Emergency Detention Impoundment, Vegetative Monitoring Report. Prepared for the South Florida Water Management, West Palm Beach, FL.
- Conant, R., and J.T. Collins. 1991. Peterson Field Guides Reptiles and Amphibians Eastern/Central North America. Houghton Mifflin Company, Boston, MA.
- FDEP. 2008. FS 7000 General Biological Community Sampling. Florida Department of Environmnetal Protection. Tallahassee, FL. Available online at: http://publicfiles.dep.state.fl.us/dear/sas/sopdoc/2008sops/fs7000.pdf.
- Fink, L.E., and F. Laroche. 2005. Annual Report Exotics Exclusion Effectiveness in the C-4 Emergency Detention Basin. South Florida Water Management District, West Palm Beach, FL.
- Florida Exotic Pest Plant Council's 2003 List of Invasive Species. 2003. Florida Exotic Pest Plant Council. Available online at http://www.fleppc.org/list/list.htm.
- Florida Land Use, Cover and Forms Classification System. 1999. Handbook. Florida Department of Transportation, Tallahassee, FL.
- Gleason, P.J., Ed. 1974. Environments of South Florida: Present and Past. Memoir 2, Miami Geological Society, Miami, FL.
- Godfrey, R.K., and J.W. Wooten. 1979. Aquatic and Wetland Plants of Southeastern United States Monocotyledons. University of Georgia Press, Athens, GA.
- Godfrey, R.K., and J.W. Wooten. 1981. Aquatic and Wetland Plants of Southeastern United States Dicotyledons. University of Georgia Press, Athens, GA.
- Hammer, R.L. 2002. Everglades Wildflowers. Globe Pequot Press, Guilford, CT.
- Jones, D., M. Madden, J. Snyder and K. Rutchey. 1999. Vegetation Classification System for South Florida National Parks-Draft Report. South Florida Water Management District, West Palm Beach, FL.
- Keith and Schnars, P.A. 2004. C-4 Canal Emergency Impoundment Project, Modified Monitoring plan for the C-4 Emergency Impoundment Operations. Prepared for the South Florida Water Management District, West Palm Beach, FL.
- Lodge, T.E. 2005. The Everglades Handbook Understanding the Ecosystem, Second Edition, CRC Press, Boca Raton, FL.

- Miller, B. 1997. Wetlands Rapid Assessment Protocol (WRAP). South Florida Water Management District, West Palm Beach, FL.
- Miller Legg and Associates, Inc. 2003. C-4 Phase 2 Emergency Detention Basin, Wetland Vegetative Monitoring Plan. Prepared for the South Florida Water Management District, West Palm Beach, FL.
- National Geographic Society. 1999. Field Guide to the Birds of North America, 3<sup>rd</sup> Edition.
- Novak, C.E. 1985. Preparation of Water-Resources Data Reports: U.S. Geological Survey, Open File Report, 85-480.
- Peterson, R.T. 1980. Peterson Field Guides Eastern Birds. Houghton Mifflin Company, Boston.
- Redfield G.W. 2002. Atmospheric Deposition of Phosphorus: Concepts, Constraints and Published Deposition Rates for Ecosystem Management. Technical Publication #360. Environmental Monitoring & Assessment Department. South Florida Water Management District, West Palm Beach, FL.
- Rutchey, K., and T. Schall. 2005. Addendum to Vegetation Classification System for South Florida National Parks-Draft Report. South Florida Water Management District, West Palm Beach, FL.
- SFWMD. 1999. Comprehensive Quality Assurance Plan No. 870166G. South Florida Water Management District, West Palm Beach, FL.
- SFWMD. 2010. Chemistry Laboratory Quality Manual, SFWMD-LAB-QM-2010-001. South Florida Water Management District. West Palm Beach, FL.
- SFWMD. 2010. Taxonomic and Nutrient Periphyton Collection, SFWMD-FIELD-SOP-025-01. South Florida Water Management District, West Palm Beach, FL.
- SFWMD. 2011. Field Sampling Quality Manual, SFWMD-FIELD-QM-001-07. South Florida Water Management District, West Palm Beach, FL.
- Smith, R.L. 1980. Ecology and Field Biology, Third Edition. Harper & Row, Publishers, New York, NY.
- Stokes, D., and L. Stokes. 1996. Stokes Field Guide to Birds, Eastern Region. Little, Brown and Company, New York., NY
- Thompson, F.G. 1984. Freshwater Snails of Florida: A Manual for Identification. University Press of Florida, Gainesville, FL.
- Thorp, J.H and A.P. Covich, eds. 1991. Ecology and Classification of North American Freshwater Invertebrates. Academic Press, New York, NY.
- Tobe, et al. 1998. Florida Wetland Plants: An Identification Manual. Florida Department of Environmental Protection, Tallahassee, FL.
- U.S. Fish and Wildlife Service. 1980. Atlas of North American Freshwater Fishes. North Carolina State Museum of Natural History.
- Wunderlin, R.P. 1998. Guide to the Vascular Plants of Florida. University Press of Florida, Gainesville, FL.

### Attachment A: Specific Conditions and Cross-References

# Table A-1. Specific conditions, actions taken, and cross-references presented for theC4 Emergency Detention Basin – Phase I & II Project, Permit #Phase 1: EI 13-0192729-001;Phase 2: EI 13-0192729-004; Modification by EI 13-012729-011.

| Specific<br>Condition                | Description                                                             | Applicable<br>Phase | Action Taken                                                             | (All referenc                 |                      | n 2012 SFER<br>ne III, unless otherwise | noted)                   |
|--------------------------------------|-------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------|-------------------------------|----------------------|-----------------------------------------|--------------------------|
| Condition                            |                                                                         | Thase               |                                                                          | Table                         | Narrative            | Figure                                  | Attachment               |
| Phase 1<br>El 13-<br>0192729-<br>001 |                                                                         |                     |                                                                          |                               |                      |                                         |                          |
| 8                                    | Wetland Monitoring &<br>Maintenance: Water Quality                      | Phase I             | Conducted Water Quality<br>Sampling                                      | 3, 4, B-1                     | pgs. 5-7             | 2                                       | Attachment B             |
| 8                                    | Wetland Monitoring & Maintenance: Periphyton                            | Phase I             | Conducted Periphyton Sampling                                            |                               | pgs. 7-10            | 3, 4, 5, 6                              | Attachment J             |
| 8                                    | Wetland Monitoring &<br>Maintenance: Total<br>Phosphorus                | Phase I             | Utilized Water Quality Monitoring<br>Data to Determine TP Mass<br>Budget | 5, 6, 7, 8                    | pgs. 10-15,<br>20-22 | 7, 8, 9, 10, 11, 12,<br>13, 14, 15      |                          |
| 8                                    | Wetland Monitoring &<br>Maintenance: Incidental<br>Wildlife             | Phase I             | Conducted Incidental Wildlife<br>Observations                            | 9                             | pg. 23               |                                         | Attachment J             |
| 8                                    | Wetland Monitoring &<br>Maintenance: WRAP<br>Assessment                 | Phase I             | Conducted WRAP Assessment                                                | 10                            | pgs. 24-26           | 16                                      |                          |
| 8                                    | Wetland Monitoring &<br>Maintenance: Intensive<br>Vegetation Monitoring | Phase I             | Conducted Intensive Vegetation<br>Survey                                 |                               | pgs. 28-29           | 17                                      | Attachment E             |
| 8                                    | Wetland Monitoring &<br>Maintenance: Vegetation<br>Monitoring           | Phase I             | Conducted Vegetation mapping                                             | 11, 12, 13, 14, 15,<br>16, 17 | pgs. 30-37,<br>42-48 | 18, 19, 20, 21, 22                      | Attachment<br>F, G, H, I |
| 8                                    | Biennial Workshop                                                       | Phase I             | Held Biennial Workshop in<br>September 2011                              |                               |                      |                                         | Attachment K             |
| 12                                   | Operation                                                               | Phase 1             | Conducted Operation During<br>Storm Event                                |                               | pg. 15               | 9                                       |                          |

| Specific<br>Condition                | Description                                                             | Applicable<br>Phase | Action Taken                                                             | (All referenc                 | Reported in 2012 SFER<br>(All references are to Volume III, unless otherwise noted) |                                    |                          |  |  |  |
|--------------------------------------|-------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------|------------------------------------|--------------------------|--|--|--|
| Contailion                           |                                                                         | 1 11050             |                                                                          | Table                         | Narrative                                                                           | Figure                             | Attachment               |  |  |  |
| Phase 2<br>El 13-<br>0192729-<br>004 |                                                                         |                     |                                                                          |                               |                                                                                     |                                    |                          |  |  |  |
| 11                                   | Wetland Monitoring &<br>Maintenance: Water Quality                      | Phase II            | Conducted Water Quality<br>Sampling                                      | 3, 4                          | pgs. 5-7                                                                            | 2                                  | Attachment B             |  |  |  |
| 11                                   | Wetland Monitoring & Maintenance: Periphyton                            | Phase II            | Conducted Periphyton Sampling                                            |                               | pgs. 7-10                                                                           | 3, 4, 5, 6                         | Attachment J             |  |  |  |
| 11                                   | Wetland Monitoring &<br>Maintenance: Total<br>Phosphorus                | Phase II            | Utilized water quality monitoring<br>data to determine TP mass<br>budget | 5, 6, 7, 8                    | pgs. 10-15,<br>20-22                                                                | 7, 8, 9, 10, 11, 12,<br>13, 14, 15 |                          |  |  |  |
| 11                                   | Wetland Monitoring &<br>Maintenance: Incidental<br>Wildlife             | Phase II            | Conducted Incidental Wildlife<br>Observations                            | 9                             | pg. 23                                                                              |                                    | Attachment J             |  |  |  |
| 11                                   | Wetland Monitoring &<br>Maintenance: WRAP<br>Assessment                 | Phase II            | Conducted WRAP Assessment                                                | 10                            | pgs. 24-26                                                                          | 16                                 |                          |  |  |  |
| 11                                   | Wetland Monitoring &<br>Maintenance: Intensive<br>Vegetation Monitoring | Phase II            | Conducted Intensive Vegetation<br>Survey                                 |                               | pgs. 28-29                                                                          | 17                                 | Attachment E             |  |  |  |
| 11                                   | Wetland Monitoring &<br>Maintenance: Vegetation<br>Monitoring           | Phase II            | Conducted Vegetation mapping                                             | 11, 12, 13, 14, 15,<br>16, 17 | pgs. 30-37,<br>42-48                                                                | 18, 19, 20, 21, 22                 | Attachment<br>F, G, H, I |  |  |  |
| 11                                   | Biennial Workshop                                                       | Phase II            | Held Biennial Workshop in<br>September 2011                              |                               |                                                                                     |                                    | Attachment K             |  |  |  |
| 12                                   | Removal of Exotic<br>Vegetation                                         | Phase II            | Treated and Survey Melaleuca                                             | 11, 15                        | pg. 47                                                                              |                                    |                          |  |  |  |
| 16                                   | Operation                                                               | Phase 1I            | Conducted Operation during<br>storm event                                |                               | pg. 15                                                                              | 9                                  |                          |  |  |  |

## Attachment B: Water Quality Data Summary (May 1, 2010–April 30, 2011)

### **Attachment Note:**

**Table B-1** summarizes all water quality data collected from May 1, 2009, to April 30, 2011, for the C-4 EDB water quality monitoring sites.

| <b>8-1.</b> W | 1. Water quality data summary in C-4 EDB for WY2009 and WY2011. |                 |      |     |     |     |        |     |     |                               |                    |                 |  |
|---------------|-----------------------------------------------------------------|-----------------|------|-----|-----|-----|--------|-----|-----|-------------------------------|--------------------|-----------------|--|
| NUMBER        | PERIOD OF<br>RECORD                                             | # OF<br>SAMPLES | MEAN | STD | MIM | Q25 | MEDIAN | Q75 | MAX | # BELOW<br>DETECTION<br>LIMIT | # OF<br>EXCURSIONS | %<br>EXCURSIONS |  |

Table B-

| STATION | TEST NAME   | UNITS  | TEST<br>NUMBER | PERIOD OF<br>RECORD   | # OF<br>SAMPLES | MEAN   | STD   | MIN    | Q25    | MEDIAN | Q75    | MAX    | # BELOW<br>DETECTION<br>LIMIT | # OF<br>EXCURSIONS | %<br>EXCURSIONS |
|---------|-------------|--------|----------------|-----------------------|-----------------|--------|-------|--------|--------|--------|--------|--------|-------------------------------|--------------------|-----------------|
| G420    | DIS. KJEL N | mg N/L | 22             | 29MAR2010 - 21MAR2011 | 6               | 1.202  | 0.062 | 1.100  | 1.175  | 1.210  | 1.245  | 1.270  | 0                             | 0                  | 0.00%           |
| G420    | NOX         | mg N/L | 18;180         | 29MAR2010 - 21MAR2011 | 6               | 0.017  | 0.021 | 0.005  | 0.005  | 0.008  | 0.013  | 0.059  | 2                             | 0                  | 0.00%           |
| G420    | OPO4        | mg P/L | 23             | 29MAR2010 - 21MAR2011 | 6               | 0.002  | 0.000 | 0.002  | 0.002  | 0.002  | 0.002  | 0.003  | 4                             | 0                  | 0.00%           |
| G420    | TEMP        | CENT   | 7              | 29MAR2010 - 21MAR2011 | 6               | 25.383 | 0.757 | 24.200 | 24.925 | 25.700 | 25.875 | 26.100 | 0                             | 0                  | 0.00%           |
| G420    | TKN         | mg N/L | 21             | 29MAR2010 - 21MAR2011 | 6               | 1.230  | 0.060 | 1.130  | 1.208  | 1.240  | 1.265  | 1.300  | 0                             | 0                  | 0.00%           |
| G420    | TN          | mg N/L | 80             | 29MAR2010 - 21MAR2011 | 6               | 1.247  | 0.072 | 1.141  | 1.219  | 1.245  | 1.270  | 1.359  | 0                             | 0                  | 0.00%           |
| G420    | TOT. DIS. P | -      | 26             | 29MAR2010 - 21MAR2011 | 6               | 0.003  | 0.001 | 0.002  | 0.002  | 0.002  | 0.003  | 0.005  | 0                             | 0                  | 0.00%           |
| G420    | TP          | mg P/L | 25             | 29MAR2010 - 21MAR2011 | 5               | 0.007  | 0.002 | 0.006  | 0.006  | 0.007  | 0.009  | 0.009  | 0                             | 0                  | 0.00%           |
| G420    | NO3         | mg N/L | 78             | 29MAR2010 - 27MAY2010 | 2               | 0.009  | 0.003 | 0.007  | 0.008  | 0.009  | 0.010  | 0.011  | 0                             | 0                  | 0.00%           |

### Attachment C: Water Quality Data (May 1, 2009–April 30, 2011)

This project information is required by Specific Condition 11 of the permit for the C-4 Emergency Detention Basin, and is available upon request.

### Attachment D: Hydrological Data (May 1, 2009 – April 30, 2011)

This project information is required by Specific Condition 11 of the permit for the C-4 Emergency Detention Basin, and is available upon request.

# Attachment E: Intensive Vegetation Survey Results

|                                          |                                   | STA 6    | Site<br>41: | Site<br>41: | Site<br>41: | Site 41    | Site 41:   | Site 41:   |                    |
|------------------------------------------|-----------------------------------|----------|-------------|-------------|-------------|------------|------------|------------|--------------------|
| C-4 Impoundment Multi<br>Year Comparison | Date surveyed                     | Baseline | Apr-<br>05  | May-<br>07  | Apr-09      | May-<br>11 | 07 to '09  | 09 to '11  |                    |
| rear comparison                          | Latitude                          | 25.7706  |             |             |             |            | Change     | In Percent | Change in Presence |
|                                          | Longitude                         | -80.436  |             |             |             |            | Coverage   |            | Change in Fresence |
|                                          | FLUCCS Code                       |          | 643s        | 643ms       | 643ms       | 643        |            |            |                    |
| Species                                  | Common Name                       |          |             |             |             |            |            |            |                    |
| Andropogon sp.                           | Bluestem                          | 0        | 2           | 8           | 1           | 0.0        | -7         | -1         | Present in 2009    |
| Centella asiatica                        | Coinwort                          | 0        | 2           | 1           | 2           | 5.3        | 1          | 3.3        | Present            |
| Cladium jamaicense                       | Sawgrass                          | 4.25     | 2           | 6           | 2           | 3.2        | -4         | 1.2        | Present            |
| Dichanthelium erectifolium               | Erect-leaf witchgrass             | 0        | 1           | 3           | 0           | 3.5        | -3         | 3.5        | Present in 2011    |
| Eupatorium capillifolium                 | Dog-fennel                        | 0        | 0           | 1           | 0           | 1.7        | -1         | 1.7        | Present in 2011    |
| Flaveria linearis                        | Narrowleaf yellowtops             | 0        | 1           | 1           | 0           | 0.8        | -1         | 0.8        | Present in 2011    |
| Hypericum brachyphyllum                  | Coastal-plain St. John's-<br>wort | 0        | 1           | 1           | 1           | 2.6        | 0          | 1.6        | Present            |
| Ludwigia erecta                          | Red ludwigia                      | 0.25     | 0           | 0           | 0           | 0.0        | 0          | 0          | Absent             |
| Melaleuca quinquenervia                  | Punk tree                         | 0.25     | 1           | 1           | 1           | 0.2        | 0          | -0.8       | Present            |
| Melaleuca quinquenervia -<br>dead        | Punk tree - dead                  | 0        | 0           | 0           | 2           | 0.0        | 2          | -2         | Present in 2009    |
| Mitreola sessilifolium                   | Miterwort                         | 0        | 1           | 0           | 0           | 0.0        | 0          | 0          | Absent             |
| Mitreola petiolata                       | Miterwort                         | 0        | 0           | 1           | 0           | 0.0        | -1         | 0          | Present in 2011    |
| Muhlenbergia capillaris                  | Muhly grass                       | 58.25    | 79          | 65          | 83          | 22.0       | 18         | -61        | Present            |
| Myrica cerifera                          | Wax myrtle                        | 0        | 0           | 2           | 2           | 0.0        | 0          | -2         | Present in 2009    |
| Panicum dichotomum                       | Panic grass                       | 1        | 0           | 0           | 0           | 0.0        | 0          | 0          | Absent             |
| Panicum hemitomon                        | Maidencane                        | 0.25     | 0           | 0           | 0           | 0.0        | 0          | 0          | Absent             |
| Polygala sp.                             | Bachelors buttons                 | 0        | 1           | 1           | 1           | 10.3       | 0          | 9.3        | Present            |
| Rhynchospora divergens                   | Spreading beakrush                | 0        | 0           | 5           | 1           | 0.0        | -4         | -1         | Present in 2009    |
| Rhynchospera colorata                    | White top sedge                   | 0        | 1           | 0           | 1           | 0.0        | 1          | -1         | Present in 2009    |
| Rhynchospora microcarpa                  | Southern beak rush                | 0.75     | 0           | 0           | 0           | 0.0        | 0          | 0          | Absent             |
| Sagittaria lancifolia                    | Lance-leaf arrowhead              | 0        | 0           | 2           | 0           | 0.0        | -2         | 0          | Absent             |
| Samolus ebracteatus                      | Water pimpernel                   | 0        | 3           | 0           | 1           | 0.1        | 1          | -0.9       | Present            |
| Setaria parviflora                       | Knotroot foxtail                  | 0        | 0           | 2           | 0           | 0.0        | -2         | 0          | Absent             |
| Open<br>Dead/Periphyton/Algae            | Periphyton/Open/Dead              | 35       | 5           | 0           | 2           | 49.0       | 2          | 47         | Present            |
| Pink: greater than 10% loss of           | Green: Greater than 10%           | Blue     | : Present   | in          | Orange      | Present in | n 2009 but |            |                    |
| cover gain in cover 2011 but not in 2009 |                                   |          |             |             |             |            |            |            |                    |

|                                          |                                   | STA 16    | Site<br>36: | Site<br>36: | Site<br>36: | Site<br>36: |              |                |                    |
|------------------------------------------|-----------------------------------|-----------|-------------|-------------|-------------|-------------|--------------|----------------|--------------------|
|                                          | Date surveyed                     | Oct-03    | Apr-05      | May-<br>07  | May-<br>09  | May-<br>11  | 07 to<br>'09 | 09' to<br>'11  |                    |
| C-4 Impoundment Multi<br>Year Comparison | Latitude                          | 25.77028  |             |             |             |             |              | nge in<br>cent | Change in Presence |
|                                          | Longitude                         | -80.44611 |             |             |             |             | Cove         | erage          |                    |
|                                          | FLUCCS Code                       |           | 643ms       |             | 643ms       | 643         |              |                |                    |
| Species                                  | Common Name                       |           |             |             |             |             |              |                |                    |
| Agalinus linifolia                       | Flaxleaf foxglove                 | 0         | 0           | 2           | 0           | 0.0         | -2           | 0.0            | Absent             |
| Andropogon glomeratus                    | Broomsedge, Bushy<br>bluestem     | 1.5       | 2           | 0           | 0           | 0.0         | 0            | 0.0            | Absent             |
| Aster sp.                                |                                   |           |             |             |             | 0.1         |              | 0.1            | Present in 2011    |
| Centella asiatica                        | Coinwort                          | 0.5       | 2           | 3           | 0           | 0.6         | 0            | 0.6            | Present in 2011    |
| Cladium jamaicense                       | Sawgrass                          | 3         | 14          | 20          | 15          | 8.2         | -5           | -6.8           | Present            |
| Dichanthelium aciculare                  |                                   |           |             |             |             | 0.3         |              | 0.3            | Present in 2011    |
| Dichanthelium erectifolium               | Erect-leaf witchgrass             | 0         | 2           | 2           | 0           | 0.1         | 0            | 0.1            | Present in 2011    |
| Diodia virginiana                        | Buttonweed                        | 0         | 0           | 0           | 1           | 0.0         | 1            | -1.0           | Present in 2009    |
| Erigeron quercifolius                    |                                   |           |             |             |             | 0.1         |              | 0.1            | Present in 2011    |
| Eupatorium capillifolium                 | Dog-fennel                        | 0         | 0           | 0           | 1           | 0.0         | 1            | -1.0           | Present in 2009    |
| Flaveria linearis                        | Narrowleaf yellowtops             | 0         | 3           | 3           | 0           | 4.4         | 0            | 4.4            | Present in 2011    |
| Hypericum brachyphyllum                  | Coastal-plain St. John's-<br>wort | 0         | 0           | 0           | 1           | 0.0         | -1           | -1.0           | Present in 2009    |
| Ipomoea sagittata                        | Everglades morning-glory          | 0         | 1           | 0           | 0           | 1.2         | 0            | 1.2            | Present in 2011    |
| Ludwigia erecta                          | Red ludwigia                      | 0.5       | 0           | 0           | 0           | 0.0         | 0            | 0.0            | Absent             |
| Melaleuca guinguenervia                  | Punk tree                         | 0         | 1           | 0           | 0           | 0.0         | 0            | 0.0            | Absent             |
| Muhlenbergia capillaris                  | Muhly grass                       | 73.75     | 60          | 40          | 75          | 25.1        | 35           | -49.9          | Present            |
| Polygala balduinii                       | Baldwin's milkwort                | 0         | 0           | 0           | 1           | 0.0         | -1           | -1.0           | Present in 2009    |
| Pluchea rosea                            | Rosy camphor weed                 | 0         | 2           | 0           | 0           | 0.0         | 0            | 0.0            | Present in 2011    |
| Polygala balduinii                       | Bachelors buttons                 | 0         | 1           | 3           | 0           | 0.0         | -3           | 0.0            | Absent             |
| Rhynchospora microcarpa                  | Southern beak rush                | 0.5       | 4           | 3           | 0           | 0.0         | -3           | 0.0            | Absent             |
| Rhynchospora divergens                   | Spreading beakrush                | 0         | 0           | 7           | 1           | 0.0         | -6           | -1.0           | Present in 2009    |
| Sabatia stellaris                        | Marsh pink                        | 0         | 0           | 2           | 0           | 0.0         | -2           | 0.0            | Absent             |
| Saccharum giganteum                      | Sugarcane plumegrass              | 0         | 3           | 0           | 0           | 0.0         | 0            | 0.0            | Absent             |
| Samolus ebracteatus                      | Water pimpernel                   | 0         | 0           | 0           | 3           | 0.0         | 3            | -3.0           | Present in 2009    |
| Teucrium canadense                       | Wood sage                         | 0         | 0           | 0           | 1           | 0.5         | 1            | -0.5           | Present            |
| Various algae/open/dead                  | Periphyton/Open/Dead              | 20.25     | 5           | 15          | 0           | 54.4        | -15          | 54.4           | Present in 2011    |
| Unknown vine (arrow<br>leaves)           |                                   |           |             |             | 1           | 0           | 1            | -1             | Present in 2009    |
| Unknown Grass                            |                                   |           |             |             |             | 0.1         |              | 0.1            | Present in 2011    |

|                                          |                                  | STA 4        | Site       | Site       | Site       | Site       | Site                          |           |                    |
|------------------------------------------|----------------------------------|--------------|------------|------------|------------|------------|-------------------------------|-----------|--------------------|
|                                          |                                  | 31A 4        | 46         | 46         | 46         | 46         | 46                            |           |                    |
|                                          | Date surveyed                    | Baselin<br>e | Apr-<br>05 | May-<br>07 | May-<br>09 | May-<br>11 | 07 to<br>'09                  | 09 to '11 |                    |
| C-4 Impoundment<br>Multi Year Comparison | Latitude                         | 25.76        | 493        |            |            |            | Change in Percent<br>Coverage |           | Change in Presence |
|                                          | Longitude                        | -80.43       | 3623       |            |            |            |                               |           |                    |
|                                          | Community                        |              | 643m<br>s  | 643m<br>s  | 643m<br>s  | 643        |                               |           |                    |
| Species                                  | Common Name                      |              |            |            |            |            |                               |           |                    |
| Agalinus linifolia                       | Flaxleaf foxglove                | 0            | 0          | 3          | 0          | 0          | -3                            | 0         | Absent             |
| Andropogon sp.                           | Bluestem                         | 0            | 2          | 10         | 2          | 0          | -8                            | -2        | Present in 2009    |
| Aster sp.                                |                                  |              |            |            |            | 0.02       |                               | 0.02      | Present in 2011    |
| Centella asiatica                        | Coinwort                         | 0            | 4          | 5          | 5          | 1.8        | 0                             | -3.2      | Present            |
| Cladium jamaicense                       | Sawgrass                         | 25.25        | 4          | 5          | 2          | 1.5        | -3                            | -0.5      | Present            |
| Dichanthelium aciculare                  |                                  |              |            |            |            | 0.02       |                               | 0.02      | Present in 2011    |
| Dichanthelium<br>erectifolium            | Erect-leaf Witchgrass            | 0            | 2          | 5          | 1          | 0.3        | -4                            | -0.7      | Present            |
| Eragrostis spectabilis                   | Purple lovegrass                 | 0.75         | 0          | 0          | 0          | 0          | 0                             | 0         | Absent             |
| Erigeron quercifolius                    | Oakleaf fleabane                 | 0            | 1          | 0          | 0          | 0.06       | 0                             | 0.06      | Present in 2011    |
| Eupatorium capillifolium                 | Dog-fennel                       | 0            | 0          | 0          | 1          | 0.02       | 1                             | -0.98     | Present            |
| Eustachys                                |                                  | _            | -          | -          |            | 0.02       |                               | 0.02      | Present in 2011    |
| Flaveria linearis                        | Narrowleaf vellowtops            | 0            | 2          | 0          | 1          | 0          | 1                             | -1        | Present in 2009    |
| Hypericum<br>brachyphyllum               | Coastal-plain St.<br>John's-wort | 1.25         | 4          | 0          | 2          | 0          | 2                             | -2        | Present in 2009    |
| Ludwigia erecta                          | Red luwigia                      | 0.5          | 0          | 0          | 0          | 0          | 0                             | 0         | Absent             |
| Melaleuca<br>quinquenervia               | Punk tree*                       | 0.25         | 2          | 0          | 1          | 0.12       | 1                             | -0.88     | Present            |
| Mitreola petiolata                       | Stalked miterwort                | 0            | 0          | 3          | 1          | 0          | -2                            | -1        | Present in 2009    |
| Muhlenbergia capillaris                  | Muhly grass                      | 42           | 39         | 60         | 70         | 8.98       | 10                            | -61.02    | Present            |
| Panicum sp.                              | Panic grass                      | 0.75         | 0          | 0          | 0          | 0.08       | 0                             | 0.08      | Present in 2011    |
| Phyla Nodiflora                          |                                  |              |            |            |            | 0.02       |                               | 0.02      | Present in 2011    |
| Pluchea rosea                            | Rosy camphor weed                | 0            | 2          | 0          | 0          | 0.04       | 0                             | 0.04      | Present in 2011    |
| Polygala balduinii                       | Bachelors buttons                | 0            | 1          | 0          | 1          | 0          | 1                             | -1        | Present in 2009    |
| Rhynchospora<br>microcarpa               | Southern beak rush               | 0.5          | 4          | 0          | 1          | 0          | 1                             | -1        | Present in 2009    |
| Rhynchospora<br>divergens                | Spreading beakrush               | 0            | 2          | 5          | 1          | 0          | -4                            | -1        | Present in 2009    |
| Samolus ebracteatus                      | Water pimpernel                  | 0            | 0          | 4          | 1          | 0          | -3                            | -1        | Present in 2009    |
| Schizachyrium sp.                        |                                  |              |            |            |            | 4.3        |                               | 4.3       | Present in 2011    |
| Setaria parviflora                       | Knotroot foxtail                 | 0            | 1          | 0          | 0          | 0          | 0                             | 0         | Absent             |
| Various algae/Open                       | Periphyton/Open/Dead             | 28.75        | 30         | 0          | 10         | 82.5       | 10                            | 72.5      | Present            |
| Unknown Grass                            |                                  |              |            |            |            | 0.06       |                               | 0.06      | Present in 2011    |

|                                   |                               | Site 8: | Site 8:    | Site<br>8: | Site<br>8: | Site 8:       |            |                    |
|-----------------------------------|-------------------------------|---------|------------|------------|------------|---------------|------------|--------------------|
| C-4 Impoundment Multi             | Date surveyed                 | Apr-05  | May-<br>07 | Apr-<br>09 | May-<br>11 | '07 to<br>'09 | '09 to '11 |                    |
| Year Comparison                   | Latitude                      | 25.7    | 25.7777    |            |            | Change        | in Percent | Channa in Brassan  |
|                                   | Longitude                     | -80.4   | 4388       |            |            | Čov           | erage      | Change in Presence |
|                                   | FLUCCS Code                   | 643xs   | 643s       | 643s       | 643        |               |            |                    |
| Species                           | Common Name                   |         |            |            |            |               |            |                    |
| Andropogon sp.                    | Bluestem                      | 1       | 0          | 10         | 0          | 10            | -10        | Present in 2009    |
| Cladium jamaicense                | Sawgrass                      | 20      | 35         | 20         | 3.2        | -15           | -16.8      | Present            |
| Dichanthelium erectifolium        | Erect-leaf witchgrass         | 1       | 3          |            | 0          | -3            | 0          | Absent             |
| Eupatorium capillifolium          | Dog-fennel                    |         | 2          |            | 0          | -2            | 0          | Absent             |
| Eustachys                         |                               |         |            |            | 0.12       |               | 0.12       | Present in 2011    |
| Hypericum brachyphyllum           | Coastal-plain St. John's-wort | 1       | 3          | 4          | 0          | 1             | -4         | Present in 2009    |
| Melaleuca quinquenervia           | Punk tree                     | 20      | 2          |            | 0          | -2            | 0          | Absent             |
| Melaleuca quinquenervia -<br>dead | Punk tree - dead              |         |            | 5          | 0          | 5             | -5         | Present in 2009    |
| Muhlenbergia capillaris           | Muhly grass                   | 25      | 35         | 40         | 6.76       | 5             | -33.24     | Present            |
| Peltandra virginica               | Green arum                    |         | 2          | 1          | 0          | -1            | -1         | Present in 2009    |
| Rhynchospora microcarpa           | Southern beak rush            | 1       | 3          | 1          | 0          | -2            | -1         | Present in 2009    |
| Rhynchospora divergens            | Spreading beakrush            |         | 3          |            | 0          | -3            | 0          | Absent             |
| Sagittaria lancifolia             | Lance-leaf arrowhead          | 1       | 2          | 3          | 0.98       | 1             | -2.02      | Present            |
| Setaria parviflora                | Knotroot foxtail              |         | 3          |            | 0          | -3            | 0          | Absent             |
| Unknown grass                     |                               |         |            | 1          | 0.18       | 1             | -0.82      | Present            |
| Various algae                     | Periphyton/Open/Dead          | 30      | 7          | 15         | 88.46      | 8             | 73.46      | Present            |

|                                   |                                   | Site 26: | Site 26: | Site 26: | Site 26:                              | Site 26:   |            |                    |
|-----------------------------------|-----------------------------------|----------|----------|----------|---------------------------------------|------------|------------|--------------------|
|                                   | Date surveyed                     | Apr-05   | May-07   | Apr-09   | May-11                                | '07 to '09 | '09 to '11 |                    |
| C-4 Impoundment Multi             | Latitude                          | 25.7     | 6722     |          | , , , , , , , , , , , , , , , , , , , | Change ir  | n Percent  |                    |
| Year Comparison                   | Longitude                         | -80.4    | 3555     |          |                                       | Cove       |            | Change in Presence |
|                                   | FLUCCS Code                       | 643ms    | 643ms    | 643ms    | 643                                   |            |            |                    |
| Species                           | Common Name                       |          |          |          |                                       |            |            |                    |
| Andropogon sp.                    | Bluestem                          | 1        | 0        | 3        | 0                                     | 3          | -3         | Present in 2009    |
| Andropogon glomeratus             | Broomsedge, Bushy bluestem        | 0        | 10       | 0        | 0                                     | -10        | 0          | Absent             |
| Aster sublatus                    | Annual saltmarsh aster            | 0        | 0        | 1        | 0                                     | 1          | -1         | Present in 2009    |
| Centella asiatica                 | Coinwort                          | 1        | 2        | 1        | 5.36                                  | -1         | 4.36       | Present            |
| Cirsium horridulum                | Thistle                           | 1        | 0        | 0        | 0                                     | 0          | 0          | Absent             |
| Cladium jamaicense                | Sawgrass                          | 3        | 3        | 3        | 1.74                                  | 0          | -1.26      | Present            |
| Dichanthelium aciculare           |                                   | 0        | 0        | 0        | 0.02                                  |            | 0.02       | Present in 2011    |
| Dichanthelium erectifolium        | Erect-leaf Witchgrass             | 2        | 2        | 1        | 4.7                                   | -1         | 3.7        | Present            |
| Eragrostis spectabilis            | Purple lovegrass                  | 0        | 0        | 0        | 0                                     | 0          | 0          | Absent             |
| Eupatorium capillifolium          | Dog-fennel                        | 0        | 3        | 0        | 0.08                                  | -3         | 0.08       | Present in 2011    |
| Eustachys                         |                                   | 0        | 0        |          | 0.34                                  |            | 0.34       | Present in 2011    |
| Flaveria linearis                 | Narrowleaf yellowtops             | 3        | 3        | 1        | 11.4                                  | -2         | 10.4       | Present            |
| Hypericum brachyphyllum           | Coastal-plain St. John's-<br>wort | 1        | 0        | 0        | 0.6                                   | 0          | 0.6        | Present in 2011    |
| Ludwigia erecta                   | Red ludwigia                      | 0        | 0        | 0        | 0                                     | 0          | 0          | Absent             |
| Melaleuca quinquenervia           | Punk tree                         | 2        | 3        | 0        | 0.02                                  | -3         | 0.02       | Present in 2011    |
| Melaleuca quinquenervia –<br>dead | Punk tree – dead                  | 0        | 0        | 3        | 0                                     | 3          | -3         | Present in 2009    |
| Mitreola petiolata                |                                   |          |          |          | 0.04                                  |            | 0.04       | Present in 2011    |
| Muhlenbergia apillaries           | Muhly grass                       | 73       | 60       | 80       | 26.58                                 | 20         | -53.42     | Present            |
| Myrica cerifera                   | Wax myrtle                        | 2        | 0        | 1        | 0                                     | 1          | -1         | Present in 2009    |
| Panicum dichotomum                | Panic grass                       | 0        | 0        | 0        | 0                                     | 0          | 0          | Absent             |
| Pluchea rosea                     | Rosy camphor weed                 | 1        | 0        | 0        | 0.02                                  | 0          | 0.02       | Present in 2011    |
| Polygala sp.                      | Bachelor's buttons                | 0        | 0        | 1        | 2.2                                   | 1          | 1.2        | Present            |
| Rhynchospora microcarpa           | Southern beak rush                | 1        | 0        | 0        | 0                                     | 0          | 0          | Absent             |
| Rhynchospora divergens            | Spreading beakrush                | 0        | 2        | 0        | 0                                     | -2         | 0          | Absent             |
| Saccharum giganteum               | Sugarcane plumegrass              | 2        | 0        | 0        | 0.06                                  | 0          | 0.06       | Present in 2011    |
| Samolus ebracteatus               | Water pimpernel                   | 2        | 2        | 1        | 0.74                                  | -1         | -0.26      | Present            |
| Open Dead Algae                   | Periphyton/Open/Dead              | 5        | 10       | 3        | 36.64                                 | -7         | 33.64      | Present            |
| Teucrium canadense                |                                   |          |          | 0        | 0.02                                  |            | 0.02       | Present in 2011    |
| Unknown grass                     |                                   |          |          | 1        | 0.12                                  | 1          | -0.88      | Present            |

|                               |                                  | Site 1:           |            |                    |  |
|-------------------------------|----------------------------------|---------|---------|---------|---------|-------------------|------------|--------------------|--|
| C-4 Impoundment               | Date surveyed                    | Apr-05  | May-07  | Apr-09  | May-11  | '07 to '09        | '09 to '11 |                    |  |
| Multi Year                    | Latitude                         | 25.7    | 786     |         |         | Change in Percent |            |                    |  |
| Comparison                    | Longitude                        | -80.    | 438     |         |         | Cove              |            | Change in Presence |  |
|                               | FLUCCS Code                      | 643xsl  | 643s    | 643ms   | 643     |                   |            |                    |  |
|                               |                                  |         |         |         |         |                   |            |                    |  |
| Andropogon sp.                | Bluestem                         | 5       | 10      | 0       |         | -10               | 0.00       | Absent             |  |
| Centella asiatica             | Coinwort                         |         | 2       | 2       | 1.40    | 0                 | -0.60      | Present            |  |
| Cladium jamaicense            | Sawgrass                         | 10      | 15      | 10      | 1.92    | -5                | -8.08      | Present            |  |
| Dichanthelium<br>erectifolium | Erect-leaf witchgrass            |         | 3       | 0       | 0.02    | -3                | 0.02       | Present in 2011    |  |
| Eustachys sp.                 | Fingergrass                      |         |         |         | 0.02    |                   | 0.02       | Present in 2011    |  |
| Hypericum<br>brachyphyllum    | Coastal plain St. John's<br>wort | 0       | 0       | 1       |         | 1                 | -1.00      | Present in 2009    |  |
| Melaleuca<br>quinquenervia    | Punk tree                        | 5       | 2       | 5       |         | 3                 | -5.00      | Present in 2009    |  |
| Muhlenbergia<br>capillaris    | Muhly grass                      | 25      | 40      | 60      | 5.86    | 20                | -54.14     | Present            |  |
| Polygala balduinii            | Bachelor's buttons               |         | 2       | 0       |         | -2                | 0.00       | Absent             |  |
| Rhynchospora<br>microcarpa    | Southern beak rush               | 3       | 3       | 2       |         | -1                | -2.00      | Present in 2009    |  |
| Rhynchospora<br>divergens     | Spreading beakrush               | 0       | 3       | 0       |         | -3                | 0.00       | Absent             |  |
| Sagittaria lancifolia         | Lance-leaf arrowhead             | 2       | 0       | 0       |         | 0                 | 0.00       | Absent             |  |
| Samolus ebracteatus           | Water pimpernel                  | 0       | 2       | 0       |         | -2                | 0.00       | Absent             |  |
| Setaria parviflora            | Knotroot foxtail                 | 0       | 3       | 0       |         | -3                | 0.00       | Absent             |  |
| Various algae                 | Periphyton/Open/Dea<br>d         | 50      | 15      | 20      | 90.98   | 5                 | 70.98      | Present            |  |
| Unknown Grass                 | Unknown Grass                    |         |         |         | 0.02    |                   | 0.02       | Present in 2011    |  |

|                                   |                           | Site 5:  | Site 5: | Site 5:  | Site 5: |            |            |                    |
|-----------------------------------|---------------------------|----------|---------|----------|---------|------------|------------|--------------------|
|                                   | Date surveyed             | Apr-05   | May-07  | Apr-09   | May-11  | '07 to '09 | '09 to '11 |                    |
| C-4 Impoundment Multi             | Latitude                  | 25.777   | indy of | , .p. 00 |         |            | n Percent  |                    |
| Year Comparison                   | Longitude                 | -80.4436 |         |          |         |            | ver        | Change in Presence |
|                                   | FLUCCS Code               | 643xs    | 643cs   | 643cs    | 643     |            |            |                    |
| Species                           | Common Name               |          |         |          |         |            |            |                    |
| Andropogon sp.                    | Bluestem                  | 1        | 0       | 3        | 0       | 3          | -3.00      | Present in 2009    |
| Aster sublatus                    | Annual saltmarsh<br>aster |          | 0       | 2        | 0       | 2          | -2.00      | Present in 2009    |
| Centella asiatica                 | Coinwort                  | 3        | 0       | 0        | 0.06    | 0          | 0.06       | Present in 2011    |
| Cladium jamaicense                | Sawgrass                  | 30       | 60      | 60       | 5.14    | 0          | -54.86     | Present            |
| Dichanthelium<br>erectifolium     | Erect-leaf witchgrass     | 1        | 5       | 1        | 0       | -4         | -1.00      | Present in 2009    |
| Erigeron                          | Fleabane                  |          |         | 1        | 0       | 1          | -1.00      | Present in 2009    |
| Eupatorium capillifolium          | Dog-fennel                | 0        | 5       | 15       | 0       | 10         | -15.00     | Present in 2009    |
| Eustachys                         |                           |          |         |          | 0.1     |            | 0.10       | Present in 2011    |
| Melaleuca quinquenervia           | Punk tree                 | 6        | 3       | 0        | 0       | -3         | 0.00       | Absent             |
| Melaleuca quinquenervia<br>- dead | Punk tree - dead          | 0        | 0       | 1        | 0       | 1          | -1.00      | Present in 2009    |
| Mitreola petiolata                | Stalked miterwort         |          | 3       |          | 0       | -3         | 0.00       | Absent             |
| Muhlenbergia capillaris           | Muhly grass               | 39       |         |          | 1.7     | 0          | 1.70       | Present in 2011    |
| Panicum sp.                       |                           |          |         |          | 11.16   |            | 11.16      | Present in 2011    |
| Peltandra virginica               | Arum                      |          |         | 1        | 0.2     | 1          | -0.80      | Present            |
| Pluchea odorata                   | Sweetscent                | 0        | 0       | 1        | 0       | 1          | -1.00      | Present in 2009    |
| Pluchea rosea                     | Rosy camphorweed          | 0        | 0       | 1        | 0       | 1          | -1.00      | Present in 2009    |
| Rhynchospora microcarpa           | Southern beak rush        | 2        |         | 1        | 0       | 1          | -1.00      | Present in 2009    |
| Rhynchospora divergens            | Spreading beakrush        | 1        | 5       | 1        | 0       | -4         | -1.00      | Present in 2009    |
| Saccharum giganteum               | Sugarcane<br>plumegrass   | 1        |         |          | 3.32    | 0          | 3.32       | Present in 2011    |
| Sagittaria lancifolia             | Lance-leaf arrowhead      | 1        | 2       | 1        | 0.84    | -1         | -0.16      | Present            |
| Setaria parviflora                | Knotroot foxtail          |          | 2       | 1        | 0       | -1         | -1.00      | Present in 2009    |
| Various algae/open                | Periphyton/Open/Dea<br>d  | 15       | 15      | 10       | 74.9    | -5         | 64.90      | Present in 2011    |
| Unknown Grass                     |                           |          |         |          | 1.66    |            | 1.66       | Present in 2011    |

|                                   |                                   | Site4: | Site4: | Site4: | Site4: |               |               |                    |
|-----------------------------------|-----------------------------------|--------|--------|--------|--------|---------------|---------------|--------------------|
| C-4 Impoundment Multi             | Date surveyed                     | Apr-05 | May-07 | Apr-09 | May-11 | '07 to<br>'09 | '09 to<br>'11 |                    |
| Year Comparison                   | Latitude                          | 25.7   | 786    |        |        | Change i      | n Percent     | Change in Presence |
|                                   | Longitude                         | -80.4  | 4416   |        |        | Co            | ver           | Change in Fresence |
|                                   | FLUCCS Code                       | 643xs  | 643cs  | 643cs  | 643    |               |               |                    |
|                                   |                                   |        |        |        |        |               |               |                    |
| Andropogon sp.                    | Bluestem                          | 2      | 0      | 5      | 0      | 5             | -5.00         | Present in 2009    |
| Aster sublatus                    | Annual saltmarsh aster            | 0      | 0      | 1      | 0      | 1             | -1.00         | Present in 2009    |
| Centella asiatica                 | Coinwort                          | 3      | 5      | 10     | 1.14   | 5             | -8.86         | Present            |
| Cladium jamaicense                | Sawgrass                          | 35     | 65     | 30     | 4.92   | -35           | -25.08        | Present            |
| Cladium jamaicense -<br>dead      | Sawgrass - dead                   | 0      | 0      | 15     | 0      | 15            | -15.00        | Present in 2009    |
| Dichanthelium erectifolium        | Erect-leaf witchgrass             | 1      | 2      | 1      | 0      | -1            | -1.00         | Present in 2009    |
| Eupatorium capillifolium          | Dog fennel                        | 0      | 0      | 10     | 0      | 10            | -10.00        | Present in 2009    |
| Hypericum brachyphyllum           | Coastal-plain St. John's-<br>wort | 1      | 2      | 1      | 0      | -1            | -1.00         | Present in 2009    |
| lpomoea saqittata                 | Everglades morning-glory          | 1      | 0      | 0      | 0.82   | 0             | 0.82          | Present in 2011    |
| Melaleuca quinquenervia           | Punk tree                         | 10     | 5      | 0      | 0      | -5            | 0.00          | Absent             |
| Melaleuca quinquenervia -<br>dead | Punk tree - dead                  | 0      | 0      | 5      | 0      | 5             | -5.00         | Present in 2009    |
| Muhlenbergia capillaris           | Muhly grass                       | 20     | 5      | 10     | 2.28   | 5             | -7.72         | Present            |
| Myrica cerifera                   | Wax myrtle                        | 0      | 0      | 1      | 0.02   | 1             | -0.98         | Present            |
| Panicum Sp.                       |                                   |        |        |        | 5.62   |               | 5.62          | Present in 2011    |
| Pluchea rosea                     | Rosy camphorweed                  | 1      | 0      | 0      | 0      | 0             | 0.00          | Absent             |
| Polygala balduinii                | Bachelor's buttons                | 1      | 2      | 0      | 0      | -2            | 0.00          | Absent             |
| Proserpinaca palustris            | Marsh mermaid weed                | 1      | 0      | 0      | 0      | 0             | 0.00          | Absent             |
| Rhynchospora microcarpa           | Southern beak rush                | 1      | 0      | 1      | 0      | 1             | -1.00         | Present in 2009    |
| Rhynchospora divergens            | Spreading beakrush                | 1      | 2      | 0      | 0      | -2            | 0.00          | Absent             |
| Sagittaria lancifolia             | Lance-leaf arrowhead              | 1      | 0      | 0      | 0.48   | 0             | 0.48          | Present in 2011    |
| Samolus ebracteatus               | Water pimpernel                   | 1      | 0      | 0      | 0      | 0             | 0.00          | Absent             |
| Setaria parviflora                | Knotroot foxtail                  |        | 2      | 0      | 0      | -2            | 0.00          | Absent             |
| Various algae/Open                | Periphyton/Open/Dead              | 20     | 10     | 10     | 85.2   | 0             | 75.20         | Present            |
| Unknown Grass                     |                                   |        |        |        | 0.14   |               | 0.14          | Present in 2011    |

|                                   |                                   | Site 51: | Site 51: | Site 51: | Site 51: |             |               |                    |
|-----------------------------------|-----------------------------------|----------|----------|----------|----------|-------------|---------------|--------------------|
| <b>.</b>                          | Date surveyed                     | Apr-05   | May-07   | Apr-09   | May-11   | '07 to '09  | '09 to '11    |                    |
| C-4 Impoundment Multi             | Latitude                          | 25.7786  |          |          |          |             |               |                    |
| Year Comparison                   | Longitude                         | -80.4416 |          |          |          | Change in I | Percent Cover | Change in Presence |
|                                   | FLUCCS Code                       | 643t     | 643rm    | 643h     | 643      |             |               |                    |
|                                   |                                   | 0.00     | 0.101111 | 0.011    | 0.0      |             |               |                    |
| Andropogon sp.                    | Bluestem                          | 0        | 20       | 30       | 0.26     | 10          | -29.74        | Present            |
| Aristida sp.                      |                                   |          |          |          | 0.34     |             | 0.34          | Present in 2011    |
| Aster braciae                     | Brace's aster                     | 1        | 0        | 0        | 0        | 0           | 0.00          | Absent             |
| Blechnum serrulatum               | Swamp fern                        | 0        | 0        | 1        | 0        | 1           | -1.00         | Present in 2009    |
| Brace's aster subulatus           | Annual saltmarsh                  | 1        | 0        | 0        | 0        | 0           | 0.00          | Absent             |
| Centella asiatica                 | Coinwort                          | 3        | 3        | 0        | 0.48     | -3          | 0.48          | Present in 2011    |
| Cladium jamaicense                | Sawgrass                          | 0        | 0        | 0        | 2.4      | 0           | 2.40          | Present in 2011    |
| Crinum americanum                 | Swamp-lily                        | 3        | 0        | 0        | 0        | 0           | 0.00          | Absent             |
| Dichanthelium aciculare           |                                   |          |          |          | 0.2      |             | 0.20          | Present in 2011    |
| Dichanthelium erectifolium        | Erect-leaf Witchgrass             | 1        | 5        | 0        | 0.84     | -5          | 0.84          | Present in 2011    |
| Eupatorium capillifolium          | Dog-fennel                        | 3        | 10       | 15       | 0.24     | 5           | -14.76        | Present            |
| Eustachys                         |                                   |          |          |          | 1.24     |             | 1.24          | Present in 2011    |
| Flaveria linearis                 | Narrowleaf yellowtops             | 0        | 30       | 30       | 1.8      | 0           | -28.20        | Present            |
| Hypericum brachyphyllum           | Coastal-plain St. John's-<br>wort | 1        | 0        | 1        | 0        | 1           | -1.00         | Present in 2009    |
| Ipomoea sagittata                 | Everglades morning-glory          | 1        | 0        | 0        | 0.06     | 0           | 0.06          | Present in 2011    |
| Justicia sp.                      |                                   | 0        | 0        | 1        | 0        | 1           | -1.00         | Present in 2009    |
| Melaleuca quinquenervia           | Punk tree                         | 3        | 0        | 0        | 0        | 0           | 0.00          | Absent             |
| Melaleuca quinquenervia -<br>dead | Punk tree - dead                  | 0        | 0        | 5        | 0        | 5           | -5.00         | Present in 2009    |
| Mikania scandens                  | Climbing hempweed                 | 1        | 1        | 1        | 0.04     | 0           | -0.96         | Present            |
| Mitreola sessilifolium            | Sessile miterwort                 | 1        | 0        | 0        | 0.06     | 0           | 0.06          | Present in 2011    |
| Muhlenbergia capillaris           | Muhly grass                       | 0        | 0        | 2        | 5.1      | 2           | 3.10          | Present            |
| Myrica cerifera                   | Wax myrtle                        | 0        | 0        | 2        | 0        | 2           | -2.00         | Present in 2009    |
| Pluchea odorata                   | Saltmarsh fleabane                | 0        | 0        | 5        | 0.98     | 5           | -4.02         | Present            |
| Pluchea rosea                     | Rosy camphor weed                 | 2        | 0        | 1        | 0        | 1           | -1.00         | Present in 2009    |
| Polygala balduinii                | Bachelors buttons                 | 1        | 2        | 2        | 0        | 0           | -2.00         | Present in 2009    |
| Proserpinaca palustris            | Marsh mermaid weed                | 2        | 0        | 0        | 0        | 0           | 0.00          | Absent             |
| Rhynchospora microcarpa           | Southern beak rush                | 0        | 3        | 0        | 0        | -3          | 0.00          | Absent             |
| Rhynchospora divergens            | Spreading beakrush                | 2        | 3        | 0        | 0        | -3          | 0.00          | Absent             |
| Saccharum giganteum               | Sugarcane plumegrass              | 2        | 5        | 0        | 0        | -5          | 0.00          | Absent             |
| Samolus ebracteatus               | Water pimpernel                   | 0        | 2        | 1        | 0        | -1          | -1.00         | Present in 2009    |
| Setaria parviflora                | Knotroot foxtail                  | 0        | 3        | 0        | 0        | -3          | 0.00          | Absent             |
| Solidago gigantea                 | Giant goldenrod                   | 0        | 2        | 0        | 0.08     | -2          | 0.08          | Present in 2011    |
| Sonchus oleaceus                  | Common sow-thistle                | 1        | 0        | 0        | 0        | 0           | 0.00          | Absent             |
| Teucrium canadense                | Wood sage                         | 1        | 1        | 0        | 0        | -1          | 0.00          | Absent             |
| Thelypteris kunthii               | Shield fern                       | 0        | 0        | 1        | 0        | 1           | -1.00         | Present in 2009    |
| Thistle                           |                                   | 0        | 0        | 1        | 0        | 1           | -1.00         | Present in 2009    |
| Various algae                     | Periphyton/Open/Dead              | 70       | 10       | 0        | 85.16    | -10         | 85.16         | Present in 2011    |
| Unknown herbaceous                |                                   | 0        | 0        | 1        | 0        | 1           | -1.00         | Present in 2009    |
| Unknown Grass                     |                                   |          |          |          | 0.04     |             |               | Present in 2011    |

|                                   |                                   | Site 9: | Site 9: | Site 9: | Site 9: |                  |            |                    |
|-----------------------------------|-----------------------------------|---------|---------|---------|---------|------------------|------------|--------------------|
| C-4 Impoundment Multi             | Date surveyed                     | Apr-05  | May-07  | Apr-09  | May-11  | '07<br>to<br>'09 | '09 to '11 |                    |
| Year Comparison                   | Latitude                          | 25.7    | 7786    |         |         | Ch               | ange in    | Change in Dressnes |
|                                   | Longitude                         | -80.4   | 4416    |         |         |                  | ent Cover  | Change in Presence |
|                                   | FLUCCS Code                       | 643t    | 643xsl  | 643xsl  | 643     |                  |            |                    |
|                                   | Divertere                         | 0       | 0       | 10      | 0       | 10               | 40.00      |                    |
| Andropogon sp.                    | Bluestem                          | 0       | 0       | 10      | 0       | 10               | -10.00     | Present in 2009    |
| Aster braciae                     | Brace's aster                     | 1       | 0       |         | 0       | 0                | 0.00       | Absent             |
| Cephalanthus occidentalis         | Buttonbush                        | 1       | 0       |         | 0       | 0                | 0.00       | Absent             |
| Cladium jamaicense                |                                   |         |         |         | 1.08    |                  | 1.08       | Present in 2011    |
| Dichanthelium aciculare           |                                   |         |         |         | 0.64    |                  | 0.64       | Present in 2011    |
| Dichanthelium erectifolium        | Erect-leaf witchgrass             | 1       | 3       | 3       | 0       | 0                | -3.00      | Present in 2009    |
| Eupatorium capillifolium          | Dog-fennel                        | 1       | 30      | 5       | 0       | -25              | -5.00      | Present in 2009    |
| Eustachys                         |                                   |         |         |         | 0.5     |                  | 0.50       | Present in 2011    |
| Hypericum brachyphyllum           | Coastal-plain St. John's-<br>wort |         | 2       | 1       | 0       | -1               | -1.00      | Present in 2009    |
| Ludwigia microcarpa               | Little seedbox                    | 1       | 0       | 0       | 0       | 0                | 0.00       | Absent             |
| Melaleuca quinquenervia           | Punk tree                         | 3       | 25      | 0       | 0       | -25              | 0.00       | Absent             |
| Melaleuca quinquenervia -<br>dead | Punk tree - dead                  |         |         | 3       | 0       | 3                | -3.00      | Present in 2009    |
| Muhlenbergia capillaris           | Muhly grass                       | 5       |         | 2       | 5.38    | 2                | 3.38       | Present            |
| Myrica cerifera                   | Wax myrtle                        |         | 2       | 4       | 0       | 2                | -4.00      | Present in 2009    |
| Panicum Hemitomon                 | Maidencane                        |         | 2       |         | 0       | -2               | 0.00       | Absent             |
| Rhynchospora microcarpa           | Southern beak rush                | 1       | 5       | 5       | 0       | 0                | -5.00      | Present in 2009    |
| Rhynchospora divergens            | Spreading beakrush                | 1       | 5       |         | 0       | -5               | 0.00       | Absent             |
| Saccharum giganteum               | Sugarcane plumegrass              | 1       |         |         | 0       | 0                | 0.00       | Absent             |
| Setaria parviflora                | Knotroot foxtail                  |         | 3       | 1       | 0       | -2               | -1.00      | Present in 2009    |
| Unknown grass/other               |                                   |         | 3       | 1       | 0.14    | -2               | -0.86      | Present            |
| Various algae                     | Periphyton/Open/Dead              | 84      | 20      | 65      | 92.02   | 45               | 27.02      | Present            |

|                            |                               | Site 32: | Site 32: | Site 32: | Site 32: |            |               |                 |
|----------------------------|-------------------------------|----------|----------|----------|----------|------------|---------------|-----------------|
| C-4 Impoundment Multi Year | Date surveyed                 | Apr-05   | May-07   | Apr-09   | May-11   | '07 to '09 | '09 to<br>'11 |                 |
| Comparison                 | Latitude                      | 25.7786  |          |          |          | Change in  | Percent       | Change in       |
|                            | Longitude                     | -80.     | 4416     |          |          | Cove       |               | Presence        |
|                            | FLUCCS Code                   | 643t     | 643xsl   | 643xsl   | 643      |            |               |                 |
|                            |                               |          |          |          |          |            |               |                 |
| Agalinus linifolia         | Flaxleaf foxglove             | 0        | 3        | 1        | 0        | -2         | -1            | Present in 2009 |
| Andropogon sp.             | Bluestem                      | 0        | 20       | 2        | 0        | -18        | -2            | Present in 2009 |
| Andropogon glomeratus      | Broomsedge, Bushy bluestem    | 3        | 0        | 0        | 0        | 0          | 0             | Absent          |
| Aster sublatus             | Annual saltmarsh aster        | 0        | 0        | 1        | 0        | 1          | -1            | Present in 2009 |
| Centella asiatica          | Coinwort                      | 2        | 0        | 1        | 3.02     | 1          | 2.02          | Present         |
| Cladium jamaicense         | Sawgrass                      | 24       | 5        | 7        | 10.14    | 2          | 3.14          | Present         |
| Dichanthelium aciculare    |                               |          |          |          | 3.38     |            | 3.38          | Present in 2011 |
| Dichanthelium erectifolium | Erect-leaf witchgrass         | 3        | 3        | 1        | 2.32     | -2         | 1.32          | Present         |
| Diodia sp.                 |                               | 0        | 0        | 1        | 0        | 1          | -1            | Present in 2009 |
| Erigrostas chapmanii       | Lovegrass                     | 0        | 2        | 0        | 0        | -2         | 0             | Absent          |
| Eupatorium capillifolium   | Dog-fennel                    | 3        | 3        | 1        | 1.14     | -2         | 0.14          | Present         |
| Flaveria linearis          | Narrowleaf yellowtops         | 3        | 3        | 0        | 0        | -3         | 0             | Absent          |
| Hypericum brachyphyllum    | Coastal-plain St. John's-wort | 2        | 0        | 1        | 0        | 1          | -1            | Present in 2009 |
| lpomoea sagittata          |                               |          |          |          | 0.3      |            | 0.3           | Present in 2011 |
| Juncus megacephalus        | Big headed rush               | 0        | 0        | 1        | 0        | 1          | -1            | Present in 2009 |
| Linum arenicola            | Sand flax                     | 0        | 0        | 1        | 0        | 1          | -1            | Present in 2009 |
| Ludwigia erecta            | Red ludwigia                  | 0        | 0        | 0        | 0        | 0          | 0             | Absent          |
| Ludwigia microcarpa        | Little seedbox                | 1        | 0        | 0        | 0        | 0          | 0             | Absent          |
| Melaleuca quinquenervia    | Punk tree                     | 1        | 0        | 0        | 0.04     | 0          | 0.04          | Present in 2011 |
| Muhlenbergia capillaris    | Muhly grass                   | 25       | 30       | 65       | 23.74    | 35         | -41.26        | Present         |
| Oxypolis sp.               | Cowbane                       | 0        | 2        | 0        | 0        | -2         | 0             | Absent          |
| Panicum                    | Panic grass                   | 0        | 0        | 0        | 0        | 0          | 0             | Absent          |
| Pluchea rosea              | Rosy camphor weed             | 1        | 0        | 0        | 0.4      | 0          | 0.4           | Present in 2011 |
| Polygala balduinii         | Baldwin's milkwort            | 1        | 1        | 1        | 0        | 0          | -1            | Present in 2009 |
| Rhynchospora microcarpa    | Southern beak rush            | 2        | 10       | 5        | 0        | -5         | -5            | Present in 2009 |
| Rhynchospora divergens     | Spreading beakrush            | 5        | 5        | 7        | 0        | 2          | -7            | Present in 2009 |
| Rhynchospora colorata      | White top sedge               | 0        | 2        | 1        | 0.4      | -1         | -0.6          | Present         |
| Rhynchospora sp.           |                               |          |          |          | 4.78     |            | 4.78          | Present in 2011 |
| Sabatia stellaris          | Marsh pink                    | 1        | 0        | 1        | 0        | 1          | -1            | Present in 2009 |
| Samolus ebracteatus        | Water pimpernel               | 2        | 0        | 0        | 0        | 0          | 0             | Absent          |
| Setaria parviflora         | Knotroot foxtail              | 1        | 5        | 0        | 0.04     | -5         | 0.04          | Present in 2011 |
| Teucrium canadense         | Wood sage                     | 0        | 1        | 1        | 0.84     | 0          | -0.16         | Present         |
| Various algae              | Periphyton/Open/Dead          | 20       | 5        | 1        | 36.3     | -4         | 35.3          | Present         |

## Attachment F: Vegetation Monitoring Report: Stereo-Imagery Rectification Accuracy (MATCH-AT log)

| Start Post Processing: Tue Apr 05 17:11:56 2011                                                                                                    |                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Active Block<br>Number of photos<br>Number of strips                                                                                               | : complete Block<br>: 25<br>: 1                           |
| Photo scale<br>Mean terrain height [user]                                                                                                          | : 1:20308<br>: 9                                          |
| Automatic blunder detection                                                                                                                        | : OFF                                                     |
| Use all adjusted points in project file<br>as control (absolute mode)                                                                              | : OFF                                                     |
| Control parameter for block adjustment :                                                                                                           |                                                           |
| Selfcalibration<br>GNSS-Mode<br>Drift-Mode<br>IMU-Mode<br>Earth's curvature correction<br>Atmospheric correction<br>Do not eliminate manual points | : OFF<br>: OFF<br>: OFF<br>: OFF<br>: ON<br>: ON<br>: OFF |
| Standard deviations (a-priori) :                                                                                                                   |                                                           |
| Ground control (planimetry) [user]<br>Set<br>O (=default)                                                                                          | : 0. 100                                                  |
| Ground control (height) [user]                                                                                                                     |                                                           |
| Set<br>0 (=default)                                                                                                                                | : 0.200                                                   |
| Automatic image points [mm]                                                                                                                        |                                                           |
| Set<br>0 (=default)                                                                                                                                | : 0.002                                                   |
| Image points of ground control and manual measurements [mm]                                                                                        | : 0.002                                                   |

Used Cameras in block:

1 UCX-SX-1-10817438

: No correction

#### Tie Point Generator

-----

| created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>created<br>create | 149 observations for photo<br>158 observations for photo<br>163 observations for photo<br>160 observations for photo<br>157 observations for photo<br>148 observations for photo<br>142 observations for photo<br>137 observations for photo<br>136 observations for photo<br>106 observations for photo<br>75 observations for photo<br>75 observations for photo<br>80 observations for photo<br>81 observations for photo<br>81 observations for photo<br>81 observations for photo<br>104 observations for photo<br>105 observations for photo<br>106 observations for photo<br>106 observations for photo<br>107 observations for photo<br>108 observations for photo<br>109 observations for photo<br>109 observations for photo | $301_0027$<br>$301_0026$<br>$301_0025$<br>$301_0024$<br>$301_0023$<br>$301_0022$<br>$301_0021$<br>$301_0020$<br>$301_0019$<br>$301_0018$<br>$301_0018$<br>$301_0017$<br>$301_0016$<br>$301_0015$<br>$301_0014$<br>$301_0012$<br>$301_0012$<br>$301_0011$<br>$301_0010$<br>$301_0009$<br>$301_0008$<br>$301_0007$<br>$301_0005$<br>$301_0004$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                              |

total of 2874 measurements in 25 photos are used for adjustment (total 25 photos)

| sigma | naught |     |         | (17: 11: 59) |
|-------|--------|-----|---------|--------------|
| siğma | naught | 0.6 | mi cron | (17: 11: 59) |

| found | 1  | points | connecting | 2 photos  |
|-------|----|--------|------------|-----------|
| found | 9  | points | connecting | 3 photos  |
| found | 24 | points | connecting | 4 photos  |
| found | 23 | points | connecting | 5 photos  |
| found |    |        | connecting | 6 photos  |
| found | 26 | points | connecting | 7 photos  |
| found |    |        | connecting | 8 photos  |
| found |    |        | connecting | 9 photos  |
| found | 98 | points | connecting | 10 photos |
| found | 26 | points | connecting | 11 photos |

| number  | of   | observati ons | 5 | 778 |
|---------|------|---------------|---|-----|
| number  | of   | unknowns      | 1 | 212 |
| redunda | ancy | /             | 4 | 566 |

RMS automatic points in photo (number: 1598) x 0.6 micron y 0.4 micron

RMS control and manual points in photo (number: 1276) Page 2

| х | 0.6 | micron |
|---|-----|--------|
| У | 0.7 | micron |

RMS control points with default standard deviation set (number: 10) x 0.081 [feet] y 0.080 [feet]

RMS control points with default standard deviation set (number: 10) z 0.082 [feet]

sigma naught 0.6 micron (17:12:00) standard deviations of exterior orientation parameters (px, py, pz in [feet] omega, phi, kappa in [deg/1000] )

| kappa   | photo ID      | рх     | ру               | pz     | omega   | phi     |
|---------|---------------|--------|------------------|--------|---------|---------|
| 0 4004  | 301_0003      | 0. 137 | 0. 184           | 0. 078 | 1. 5671 | 1.0524  |
| 0. 4094 | 301_0004      | 0. 133 | 0. 165           | 0.069  | 1. 4021 | 1. 0295 |
| 0.3706  | 301_0005      | 0. 132 | 0. 160           | 0. 063 | 1. 3567 | 1.0289  |
| 0.3422  | 301_0006      | 0. 129 | 0. 145           | 0.057  | 1. 2220 | 1.0078  |
| 0.3142  | 301_0007      | 0. 128 | 0. 142           | 0.052  | 1. 1926 | 1.0037  |
| 0. 2955 | 301_0008      | 0. 126 | 0. 137           | 0.047  | 1. 1497 | 0. 9911 |
| 0. 2769 | 301_0009      | 0. 125 | 0. 131           | 0.044  | 1.0942  | 0. 9912 |
| 0. 2609 | 301_0010      | 0. 125 | 0. 129           | 0.042  | 1.0676  | 0. 9895 |
| 0. 2491 | 301_0011      | 0. 123 | 0. 112           | 0. 039 | 0. 9177 | 0. 9771 |
| 0. 2349 | 301_0012      | 0. 126 | 0. 119           | 0. 038 | 0. 9789 | 1. 0024 |
| 0. 2355 | 301_0013      | 0. 125 | 0. 118           | 0. 037 | 0. 9664 | 0. 9996 |
| 0. 2310 | 301_0014      | 0. 124 | 0. 113           | 0. 037 | 0. 9175 | 0. 9934 |
| 0. 2235 | 301_0015      | 0. 124 | 0. 110           | 0. 036 | 0. 8968 | 0. 9930 |
| 0. 2216 | 301_0016      | 0. 127 | 0. 118           | 0. 037 | 0. 9635 | 1.0126  |
| 0. 2272 | 301_0017      | 0. 126 | 0. 117           | 0. 037 | 0. 9618 | 1. 0077 |
| 0. 2275 | 301_0018      | 0. 128 | 0. 119           | 0.039  | 0. 9821 | 1. 0219 |
| 0. 2356 | 301_0019      | 0. 123 | 0. 121           | 0. 039 | 0. 9982 | 0. 9862 |
| 0. 2396 | 301_0020      | 0. 122 | 0. 118           | 0. 041 | 0. 9801 | 0. 9726 |
| 0. 2464 |               | 0. 124 | 0. 132           | 0. 045 | 1. 0989 | 0. 9877 |
| 0. 2622 | _<br>301_0022 | 0. 125 | 0. 138           | 0. 048 | 1. 1609 | 0. 9921 |
| 0. 2783 | 301_0023      | 0. 124 | 0. 136           | 0.052  | 1.1430  | 0. 9843 |
| 0. 2919 | 301_0024      | 0. 127 | 0. 145           | 0. 058 | 1. 2294 | 1.0015  |
| 0. 3157 | 301_0025      | 0. 128 | 0. 152<br>Page 3 | 0.064  | 1. 2853 | 1. 0029 |

| 0 0075  |          |                                                               | aat.log              |                            |                               |         |
|---------|----------|---------------------------------------------------------------|----------------------|----------------------------|-------------------------------|---------|
| 0.3375  | 301_0026 | 0. 130                                                        | 0. 161               | 0.070                      | 1. 3648                       | 1.0105  |
| 0. 3623 | 301_0027 | 0. 131                                                        | 0. 168               | 0. 078                     | 1. 4248                       | 1. 0152 |
| 0. 3918 |          |                                                               |                      |                            |                               |         |
| mean    | phi 1.0  | s of rotation<br>1 [deg/1000]<br>0 [deg/1000]<br>3 [deg/1000] | ns                   |                            |                               |         |
| max     | phi 1.   | s of rotation<br>6 [deg/1000]<br>1 [deg/1000]<br>4 [deg/1000] | at photo<br>at photo | 30                         | 01_0003<br>01_0003<br>01_0003 |         |
| mean    | y 0.13   | s of transla <sup>:</sup><br>7 [feet]<br>6 [feet]<br>0 [feet] | tions                |                            |                               |         |
| max     | y 0.18   | s of transla<br>7 [feet] at  <br>4 [feet] at  <br>3 [feet] at | photo<br>photo       | 301_00<br>301_00<br>301_00 | 003                           |         |

#### residuals horizontal control points in [feet]

| control point ID                                                                     | rx                                                                                                    | ry                                                                                                     |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| N-01<br>N-02<br>N-03<br>N-04<br>N-05<br>N-06<br>N-07<br>N-08<br>N-08<br>N-10<br>N-9R | -0. 115<br>0. 026<br>-0. 063<br>0. 071<br>-0. 097<br>0. 146<br>0. 051<br>-0. 022<br>-0. 064<br>0. 067 | 0. 051<br>0. 063<br>0. 041<br>-0. 012<br>0. 179<br>-0. 072<br>-0. 027<br>-0. 105<br>-0. 062<br>-0. 056 |
| , , , ,                                                                              | 0.007                                                                                                 | 0.000                                                                                                  |

#### residuals vertical control points in [feet]

### control point ID rz

| max | standard | devi ati ons | of terrain points |
|-----|----------|--------------|-------------------|
|     | х        | 0. 262       | [feet] at point   |
|     |          |              | Page 4            |

3000008

| y<br>z                  | 0. 235<br>0. 876 | [feet]<br>[feet] | at<br>at | aat.log<br>point<br>point | 20000001<br>20000001 |
|-------------------------|------------------|------------------|----------|---------------------------|----------------------|
| mean standard<br>x<br>y | 0. 046<br>0. 032 | of ter           | rai r    | n points                  |                      |
| Z                       | 0. 140           |                  |          |                           |                      |

| kappa      | photo ID             | рх          | ру                    | pz        | omega    | phi     |
|------------|----------------------|-------------|-----------------------|-----------|----------|---------|
|            | 301_0003             | 840068.051  | 528509. 194           | 6700. 796 | -0. 2239 | 0. 1954 |
| -179. 4285 | 301_0004             | 840081.963  | 528068.745            | 6700. 641 | -0. 2060 | 0. 1922 |
| -179. 3462 | 301_0005             | 840093.481  | 527629.763            | 6700. 253 | -0. 2016 | 0. 2012 |
| -179. 3887 | 301_0006             | 840102.299  | 527194.060            | 6699.709  | -0. 1811 | 0. 2020 |
| -179. 3760 | 301_0007             | 840109.040  | 526751.301            | 6699.073  | -0. 1528 | 0. 1545 |
| -179.4010  | 301_0008             | 840114.210  | 526317.118            | 6698.708  | -0. 2145 | 0. 1637 |
| -179.3847  | 301_0009             | 840117.867  | 525878.090            | 6698.144  | -0. 1835 | 0. 2007 |
| -179. 3785 | 301_0010             | 840120. 290 | 525437.383            | 6697.764  | -0. 1710 | 0. 1852 |
| -179. 3904 |                      | 840121.732  | 524998.288            | 6697.397  | -0. 1775 | 0. 1936 |
| -179. 4065 | _<br>301_0012        | 840122, 742 | 524560, 966           | 6697.538  | -0. 1700 | 0. 1961 |
| -179.3790  | 301_0013             | 840123.219  | 524119. 378           | 6698.632  | -0. 1869 | 0. 2293 |
| -179.3765  | 301_0014             | 840123.871  | 523682.887            | 6699.659  | -0. 1662 | 0. 2397 |
| -179. 4302 | 301_0014<br>301_0015 | 840125. 182 | 523242. 439           | 6700. 368 | -0. 2116 | 0. 1529 |
| -179. 3877 | 301_0016             | 840127. 122 | 522804.012            | 6700.016  | -0. 1874 | 0. 1927 |
| -179. 4159 |                      |             |                       |           |          |         |
| -179. 3955 | 301_0017             | 840129.502  | 522367.186            | 6699.544  | -0. 1579 | 0. 2782 |
| -179. 3418 | 301_0018             | 840132.734  | 521925. 934           | 6699. 423 | -0. 1845 | 0. 1605 |
| -179. 4320 | 301_0019             | 840136.924  | 521490. 625           | 6699.642  | -0. 1685 | 0. 1314 |
| -179. 4288 | 301_0020             | 840143.920  | 521051.016            | 6700. 548 | -0. 1289 | 0. 2105 |
| -179.3687  | 301_0021             | 840153.840  | 520610. 652           | 6702.862  | -0. 1586 | 0. 2374 |
| -179. 3627 | 301_0022             | 840166.139  | 520172.769            | 6706.342  | -0. 1648 | 0. 1937 |
| -179. 4515 | 301_0023             | 840182.666  | 519732.637            | 6712.131  | -0. 1343 | 0. 1954 |
| -179. 3829 | 301_0024             | 840205.848  | 519293. 422           | 6718.516  | -0. 1121 | 0. 2071 |
| -179. 5754 | 301_0025             | 840234.330  | 518856.173            | 6724.731  | -0. 1192 | 0. 2648 |
| 177. J7 J4 | 301_0026             | 840263.399  | 518416. 291<br>Page 5 | 6731.865  | -0. 1848 | 0. 2310 |

#### aat.log

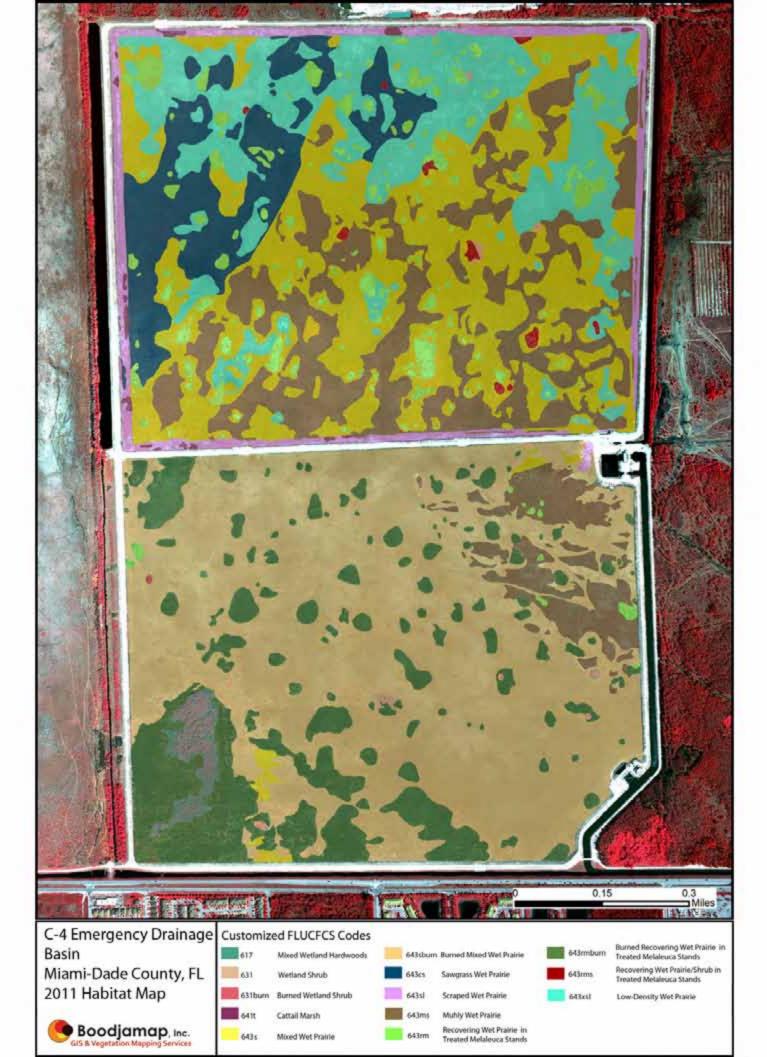
-179. 4587 301\_0027 840288. 241 517980. 792 6738. 178 -0. 1543 0. 1706 -179. 3392

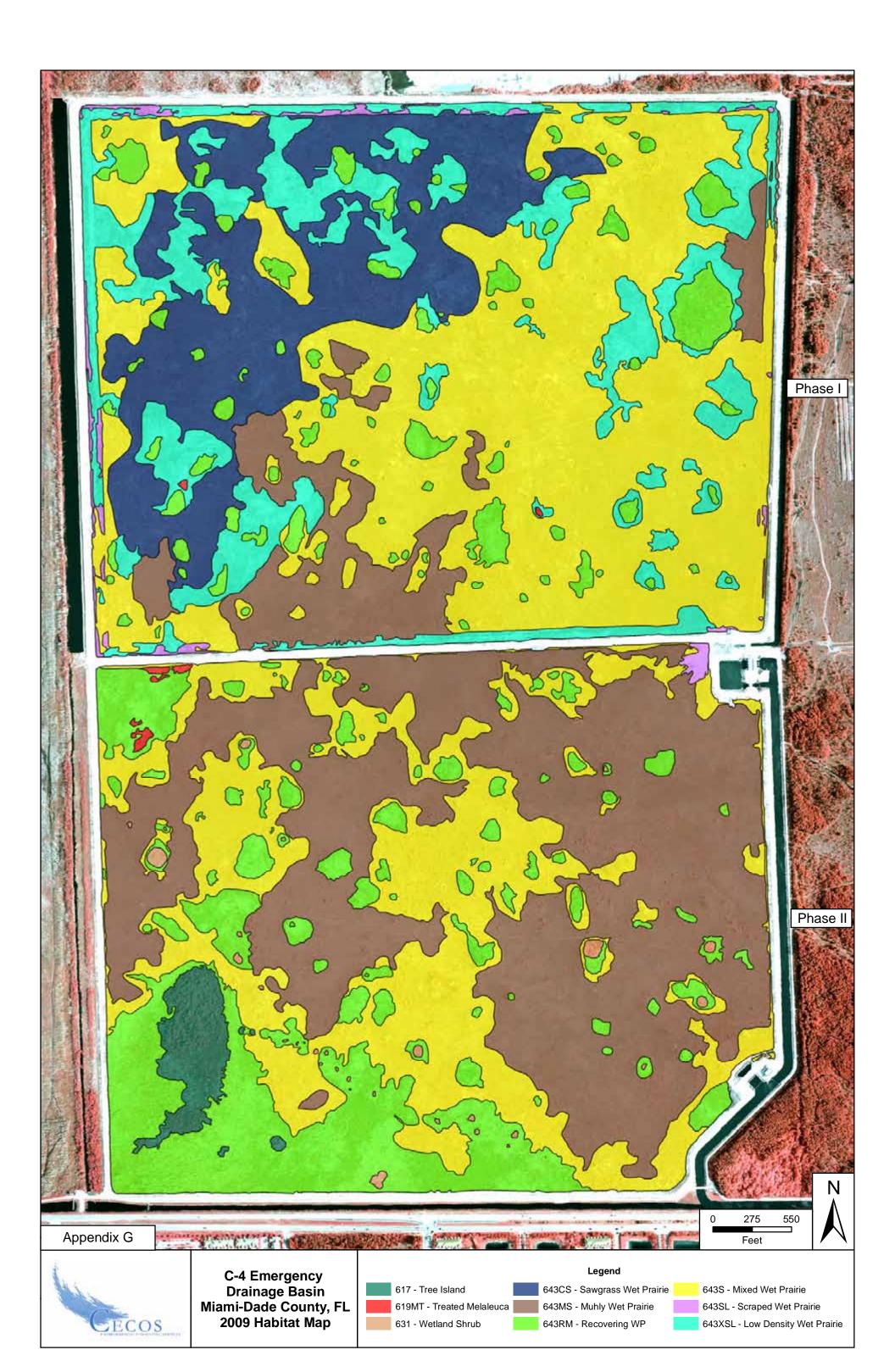
Sigma naught : 0.6 [micron] = 0.1 [pixel in level 0] Elapsed time = 0 hour 0 min. 9 sec. End of Post Processing: Tue Apr 05 17:12:03 2011

## Attachment G: Vegetation Monitoring Report: Ground-Truthing Results

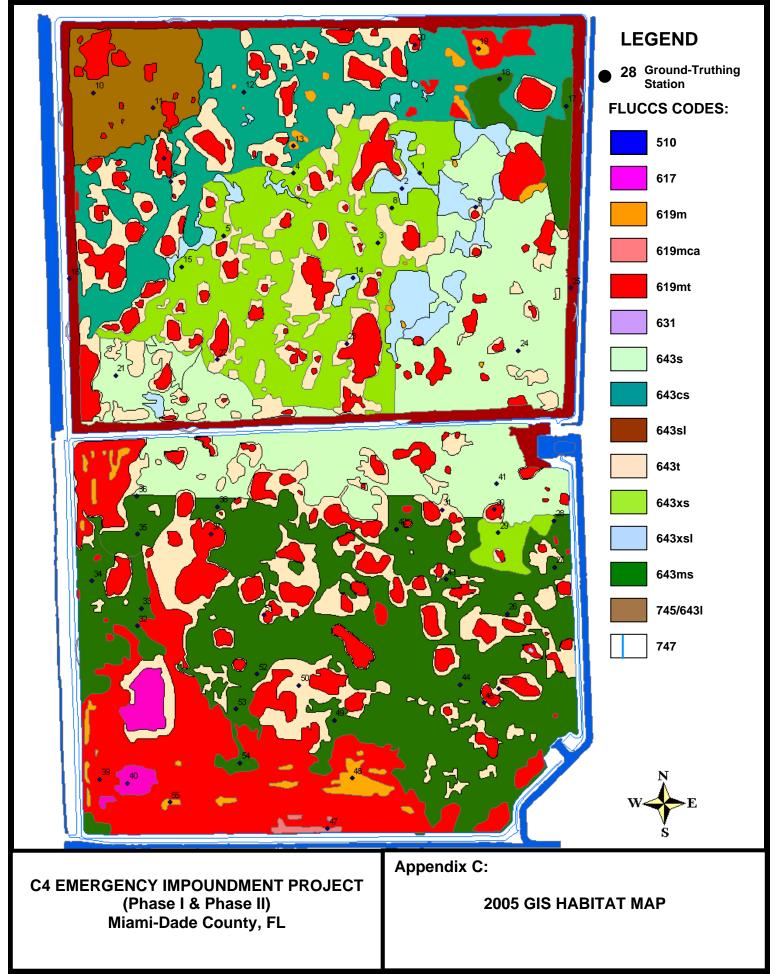
| Accuracy ID | Image ID     | Orientation | Description                                                                                                                                                                                                                                                                                                                      | FLUCFCS<br>Code(s)                 | Match |
|-------------|--------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------|
| 10          | IMG_6076.JPG | Left        | Cladium jamaicense dominated prairie with sparse treated Melaleuca quinquenervia.                                                                                                                                                                                                                                                | 643c                               | Yes   |
| 21          | IMG_6087.JPG | Left        | Open areas with short stature mixed prairie and relic treated <i>Melaleuca quinquenervia</i> .                                                                                                                                                                                                                                   | 6431                               | Yes   |
| 6           | IMG_8351.JPG | Right       | Open areas with short stature mixed prairie and relic treated <i>Melaleuca quinquenervia;</i> adjacent <i>Cladium jamaicense</i> dominated prairie with sparse <i>Myrica cerifera</i> .                                                                                                                                          | 643xl; 643c;<br>643cs              | Yes   |
| 23          | IMG_6089.JPG | Left        | Open areas with short stature mixed prairie and relic treated Melaleuca quinquenervia.                                                                                                                                                                                                                                           | 6431                               | Yes   |
| 31          | IMG_6097.JPG | Left        | Tall relic treated Melaleuca quinquenervia mixed with short stature mixed prairie.                                                                                                                                                                                                                                               | 643rm; 643                         | Yes   |
| 8           | IMG_8353.JPG | Right       | Tall relic treated <i>Melaleuca quinquenervia</i> mixed with short stature mixed prairie; adjacent <i>Muhlenbergia capillaris and Cladium jamaicense</i> mixed prairie with sparse relic treated <i>Melaleuca quinquenervia</i> .                                                                                                | 643rm; 643                         | Yes   |
| 41          | IMG_6107.JPG | Left        | Open areas with short stature mixed prairie and relic treated <i>Melaleuca quinquenervia</i> and isolated swamp shrub.                                                                                                                                                                                                           | 643l; 643                          | Yes   |
| 12          | IMG_8357.JPG | Right       | <i>Cladium jamaicense</i> dominated prairie with sparse swamp shrubs and patchy short stature mixed prairie.                                                                                                                                                                                                                     | 643c; 643cs;<br>643xsl             | Yes   |
| 50          | IMG_6116.JPG | Left        | <i>Cladium jamaicense</i> dominated prairie with sparse treated <i>Melaleuca quinquenervia</i> and isolated <i>Myrica cerifera</i> .                                                                                                                                                                                             | 643c                               |       |
| 16          | IMG_8361.JPG | Right       | Cladium jamaicensedominated prairie                                                                                                                                                                                                                                                                                              | 643c                               | Yes   |
| 58          | IMG_6124.JPG | Left        | Open areas with short stature mixed prairie and relic treated Melaleuca quinquenervia.                                                                                                                                                                                                                                           | 6431; 643                          | Yes   |
| 20          | IMG_8365.JPG | Right       | <i>Cladium jamaicense</i> dominated prairie in foreground; adjacent <i>Muhlenbergia capillaris</i> and <i>Cladium jamaicense</i> mixed prairie; background treated <i>Melaleuca quinquenervia</i> mixed with short stature mixed prairie; scrapped wet prairie adjecent levy with large patch <i>Typha latifolia</i> inclusions. | 643c; 643;<br>643m; 643xl;<br>641t | Yes   |
| 64          | IMG_6130.JPG | Left        | Mixed prairie and relic treated <i>Melaleuca quinquenervia</i> ; small patch of <i>Cladium jamaicense</i> dominated prairie in near foreground; isolated <i>Myrica cerifera</i> ; <i>Muhlenbergia capillaris</i> prairie ridge in background.                                                                                    | 643l; 643;<br>643c; 643m           | Yes   |
| 72          | IMG_6138.JPG | Left        | Muhlenbergia capillaris prairie in foreground; mixed prairie with sparse Myrica cerifera in background and relic treated Melaleuca quinquenervia.                                                                                                                                                                                | 643m; 643;<br>643s                 | Yes   |
| 78          | IMG_6144.JPG | Left        | Burned treated <i>Melaleuca quinquenervia</i> and burned prairie; center burned prairie.                                                                                                                                                                                                                                         | 643rmburn;<br>643burn              | Yes   |
| 28          | IMG_8373.JPG | Right       | Burned treated Melaleuca quinquenervia and burned prairie.                                                                                                                                                                                                                                                                       | 643rmburn;<br>643burn              | Yes   |

| 83  | IMG_6149.JPG | Left  | Burned prairie; isolated burned treated Melaleuca quinquenervia.                                                                                                                   | 643burn                                          | Yes |
|-----|--------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----|
| 31  | IMG_8376.JPG | Right | Burned treated Melaleuca quinquenervia and burned prairie.                                                                                                                         | 643rmburn;<br>643burn                            | Yes |
| 89  | IMG_6155.JPG | Left  | Burned prairie; isolated burned treated Melaleuca quinquenervia.                                                                                                                   | 643burn                                          | Yes |
| 34  | IMG_8379.JPG | Right | Burned prairie; small patch of swamp shrub.                                                                                                                                        | 643burn;<br>631burn                              | Yes |
| 95  | IMG_6161.JPG | Left  | Burned prairie; burned treated <i>Melaleuca quinquenervia</i> and burned prairie; mixed hardwoods background.                                                                      | 643burn;<br>643rmburn;<br>617                    | Yes |
| 37  | IMG_8382.JPG | Right | Burned treated Melaleuca quinquenervia and burned prairie.                                                                                                                         | 643rmburn;<br>643burn                            |     |
| 102 | IMG_6168.JPG | Left  | Mixed hardwoods.                                                                                                                                                                   | 617                                              | Yes |
| 40  | IMG_8385.JPG | Right | Burned treated Melaleuca quinquenervia and burned prairie.                                                                                                                         | 643rmburn;<br>643burn                            | Yes |
| 108 | IMG_6174.JPG | Left  | Mixed hardwoods; burned treated <i>Melaleuca quinquenervia</i> and burned prairie.                                                                                                 | 617;<br>643rmburn                                | Yes |
| 115 | IMG_6181.JPG | Left  | Burned treated <i>Melaleuca quinquenervia</i> and burned prairie; center burned prairie; patches of unburned mixed prairie; sparse burned treated <i>Melaleuca quinquenervia</i> . | 643rmburn;<br>643burn; 643                       | Yes |
| 120 | IMG_6186.JPG | Left  | Burned treated <i>Melaleuca quinquenervia</i> and burned prairie; burned prairie; sparse burned treated <i>Melaleuca quinquenervia</i> .                                           | 643rmburn;<br>643burn                            | Yes |
| 53  | IMG_8398.JPG | Right | Burned treated <i>Melaleuca quinquenervia</i> and burned prairie; sparse patches unburned mixed prairie; sparse swamp shrubs.                                                      | 643rmburn;<br>643burn;<br>643sburn;<br>643; 643s | Yes |
| 57  | IMG_8402.JPG | Right | Burned treated Melaleuca quinquenervia and burned prairie with sparse swamp shrub.                                                                                                 | 643rmburn                                        | Yes |
| 131 | IMG_6197.JPG | Left  | Burned prairie; sparse burned treated Melaleuca quinquenervi; sparse Myrica cerifera.                                                                                              | 643burn;<br>643sburn                             | Yes |
| 61  | IMG_8406.JPG | Right | Burned prairie with sparse <i>Myrica cerifera;</i> treated <i>Melaleuca quinquenervia</i> and burned prairie background.                                                           | 643burn;<br>643sburn;<br>643rmburn               | Yes |
| 65  | IMG_8410.JPG | Right | Burned prairie with sparse Myrica cerifera                                                                                                                                         | 643burn;<br>643sburn                             | Yes |
| 69  | IMG_8414.JPG | Right | Burned prairie; burned treated <i>Melaleuca quinquenervia</i> and burned prairie; sparse patches unburned <i>Muhlenbergia capillaris</i> ; sparse <i>Myrica cerifera</i> .         | 643burn;<br>643sburn;<br>643rmburn;<br>643m      | Yes |
| 140 | IMG_6206.JPG | Left  | Burned prairie; patches of unburned <i>Muhlenbergia capillari</i> prairie; sparse burned treated <i>Melaleuca quinquenervia</i> .                                                  | 643burn;<br>643m;<br>643rmburn                   | Yes |

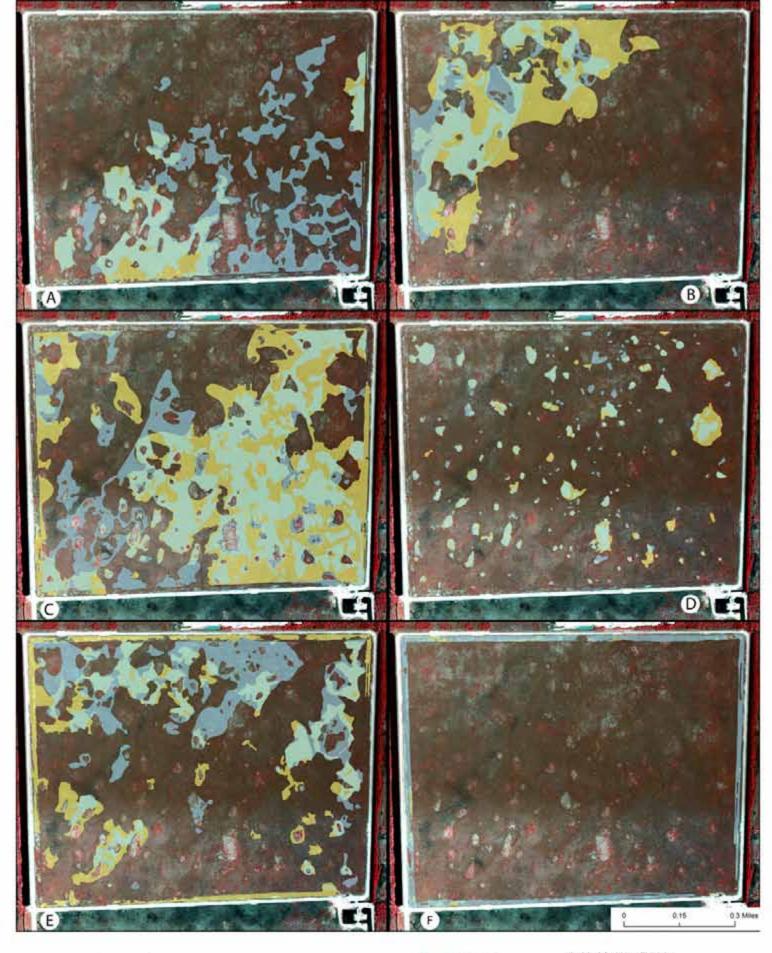

| 146 | IMG_6212.JPG | Left  | Unburned <i>Muhlenbergia capillari</i> prairie; burned prairie; sparse burned treated <i>Melaleuca quinquenervia</i> .                                                                                                                         | 643m;<br>643burn;<br>643rmburn | Yes |
|-----|--------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----|
| 153 | IMG_6219.JPG | Left  | Unburned Muhlenbergia capillari prairie; burned prairie; sparse burned treated Melaleuca quinquenervia.                                                                                                                                        | 643m;<br>643burn;<br>643rmburn | Yes |
| 81  | IMG_8426.JPG | Right | Unburned Muhlenbergia capillaris prairie; Burned prairie with sparse treated Melaleuca quinquenervia.                                                                                                                                          | 643ms;<br>643burn              | Yes |
| 160 | IMG_6226.JPG | Left  | Unburned Muhlenbergia capillari prairie.                                                                                                                                                                                                       | 643m                           | Yes |
| 168 | IMG_6234.JPG | Left  | Scrapped wet prairie adjecent levy; Muhlenbergia capillaris prairie in background.                                                                                                                                                             | 643xl; 643m                    | Yes |
| 174 | IMG_6240.JPG | Left  | Muhlenbergia capillari prairie; patches mixed prairie.                                                                                                                                                                                         | 643m; 643                      | Yes |
| 180 | IMG 6246.JPG | Left  | Mixed prairie; patches Muhlenbergia capillari prairie; isolated Myrica cerifera.                                                                                                                                                               | 643; 643m                      | Yes |
| 93  | IMG_8438.JPG | Right | Mixed short stature prairie foreground; <i>Muhlenbergia capillaris</i> prairie in foreground and alonghigher elevations; isolated patch treated <i>Melaleuca quinquenervia</i> ; isolated swamp shrubs.                                        | 643xl; 643;<br>643m            | Yes |
| 187 | IMG_6253.JPG | Left  | Mixed prairie; patches <i>Muhlenbergia capillari</i> prairie; isolated <i>Myrica cerifera;</i> tall relic treated <i>Melaleuca quinquenervia</i> mixed with short stature mixed prairie.                                                       | 643; 643m;<br>643rm            | Yes |
| 103 | IMG_8448.JPG | Right | Tall relic treated <i>Melaleuca quinquenervia</i> mixed with short stature mixed prairie; adjacent mixed prairie; <i>Muhlenbergia capillaris</i> prairie in background.                                                                        | 643rm; 643xl;<br>643; 643ms    | Yes |
| 195 | IMG_6261.JPG | Left  | Tall relic treated <i>Melaleuca quinquenervia</i> mixed with short stature mixed prairie.                                                                                                                                                      | 643rm                          | Yes |
| 204 | IMG_6270.JPG | Left  | Tall relic treated Melaleuca quinquenervia mixed with short stature mixed prairie.                                                                                                                                                             | 643rm                          | Yes |
| 113 | IMG_8458.JPG | Right | Mixed prairie with isolated open patches; relic treated <i>Melaleuca quinquenervia</i> ; isolated <i>Myrica cerifera</i> ; scrapped wet prairie adjecent levy with large patch <i>Typha latifolia</i> inclusions.                              | 643; 643xl;<br>641t            | Yes |
| 213 | IMG_6279.JPG | Left  | Muhlenbergia capillari prairie; patches mixed prairie with sparse treated Melaleuca quinquenervia and sparse Myrica cerifera.                                                                                                                  | 643m. 643,<br>643s             | Yes |
| 221 | IMG_6287.JPG | Left  | Tall relic treated <i>Melaleuca quinquenervia</i> mixed with short stature mixed prairie; sparse <i>Myrica cerifera</i> .                                                                                                                      | 643rm; 643l;<br>643s           | Yes |
| 119 | IMG_8464.JPG | Right | Tall relic treated <i>Melaleuca quinquenervia</i> mixed with swamp shrubs and short stature mixed prairie; adjacent mixed prairie; scraped wet prairie adjacent levy in background.                                                            | 643rms; 643;<br>643xl          | Yes |
| 125 | IMG_8470.JPG | Right | Muhlenbergia capillaris and Cladium jamaicense mixed prairie; sparse relic treated<br>Melaleuca quinquenervia; isolated Myrica cerifera; scrapped wet prairie adjecent levy with<br>large patch Typha latifolia inclusions.                    | 643; 643xl;<br>641t            | Yes |
| 229 | IMG_6295.JPG | Left  | Mixed prairie; Tall relic treated <i>Melaleuca quinquenervia</i> mixed with short stature mixed prairie; sparse <i>Myrica cerifera</i> .                                                                                                       | 643; 643rms                    | Yes |
| 131 | IMG_8476.JPG | Right | Short stature mixed prairie with open patches in foreground; <i>Cladium jamaicense</i> dominated prairie with sparse patches <i>Muhlenbergia capillari</i> , sparse <i>Myrica cerifera</i> and sparse treated <i>Melaleuca quinquenervia</i> . | 643l, 643c,<br>643cs           | Yes |


| 237 | IMG_6303.JPG | Left  | Mixed prairie; Tall relic treated <i>Melaleuca quinquenervia</i> mixed with short stature mixed prairie; sparse <i>Myrica cerifera</i> .                                                                                           |                                    | Yes |
|-----|--------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----|
| 244 | IMG_6310.JPG |       |                                                                                                                                                                                                                                    | 643; 643m;<br>643s; 631            | Yes |
| 135 | IMG_8480.JPG | Right | Mixed prairie with sparse Myrica cerifera and sparse treated Melaleuca quinquenervia;<br>Muhlenbergia capillari prairie on horizon                                                                                                 | 643; 643s;<br>643m, 643rm          | Yes |
| 139 | IMG_8484.JPG | Right | Muhlenbergia capillari prairie foreground, mixed prairie center; adjacent relic treated<br>Melaleuca quinquenervia mixed with short stature mixed prairie; isolated Myrica cerifera<br>and sparse treated Melaleuca quinquenervia. | 643m; 643;<br>643rm                | Yes |
| 251 | IMG_6317.JPG | Left  | Mixed prairie surrounding <i>Muhlenbergia capillari</i> prairie; isolated <i>Myrica cerifera;</i> tall relic treated <i>Melaleuca quinquenervia</i> mixed with short stature mixed prairie.                                        | 643; 643m;<br>643rm                | Yes |
| 257 | IMG_6323.JPG | Left  | Mixed prairie; patches <i>Muhlenbergia capillari</i> prairie; isolated <i>Myrica cerifera;</i> sparse relic treated <i>Melaleuca quinquenervia</i> .                                                                               | 643; 643m;<br>643rm                | Yes |
| 143 | IMG_8488.JPG | Right | Mixed prairie in foreground and background right; <i>Muhlenbergia capillari</i> prairie ridge through center; isolated <i>Myrica cerifera</i> and sparse treated <i>Melaleuca quinquenervia</i> .                                  | 643; 643s;<br>643m                 | Yes |
| 263 | IMG_6329.JPG | Left  | Muhlenbergia capillari prairie; patches mixed prairie with sparse treated Melaleuca quinquenervia.                                                                                                                                 | 643m; 643;<br>643rm                | Yes |
| 270 | IMG_6336.JPG | Left  | Burned treated <i>Melaleuca quinquenervia</i> and burned prairie; burned prairie; sparse burned treated <i>Melaleuca quinquenervia;</i> patches unburned <i>Muhlenbergia capillari</i> prairie.                                    | 643rmburn;<br>643burn;<br>643m     | Yes |
| 150 | IMG_8495.JPG | Right | Burned prairie with sparse treated Melaleuca quinquenervia; patch of unburned6-Muhlenbergia capillari prairie.6-                                                                                                                   |                                    | Yes |
| 154 | IMG_8499.JPG | Right | Burned treated <i>Melaleuca quinquenervia</i> and burned prairie with sparse <i>Myrica cerifera</i> .                                                                                                                              | 643rmburn;<br>643burn;<br>643sburn | Yes |
| 279 | IMG_6345.JPG | Left  | Burned treated Melaleuca quinquenervia and burned prairie; burned prairie; sparse burned       6         treated Melaleuca quinquenervia; sparse Myrica cerifera.       6         6       6                                        |                                    | Yes |
| 284 | IMG_6350.JPG | Left  | Burned prairie.                                                                                                                                                                                                                    | 643burn                            | Yes |
| 166 | IMG_8511.JPG | Right | Burned prairie with treated Melaleuca quinquenervia.                                                                                                                                                                               | 643burn                            | Yes |
| 291 | IMG_6357.JPG | Left  | Burned treated Melaleuca quinquenervia and burned prairie.                                                                                                                                                                         | 643rmburn                          | Yes |
| 297 | IMG_6363.JPG | Left  | Burned treated <i>Melaleuca quinquenervia</i> and burned prairie; burned prairie; sparse burned treated <i>Melaleuca quinquenervia</i> ; sparse <i>Myrica cerifera</i> .                                                           | 643rmburn;<br>643burn;<br>643sburn | Yes |
| 173 | IMG_8518.JPG | Right | Burned treated <i>Melaleuca quinquenervia</i> and burned prairie with sparse <i>Myrica cerifera</i> .                                                                                                                              | 643rmburn;<br>643burn;<br>643sburn | Yes |
| 304 | IMG_6370.JPG | Left  | Burned prairie; patches of unburned mixed prairie; sparse burned treated <i>Melaleuca</i> quinquenervia.                                                                                                                           | 643burn; 643                       | Yes |

| 177 | IMG_8522.JPG | Right | Burned treated Melaleuca quinquenervia and burned prairie with sparse Myrica cerifera.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | Yes |
|-----|--------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----|
| 312 | IMG_6378.JPG | Left  | Mixed hardwoods; burned prairie; sparse burned treated <i>Melaleuca quinquenervia</i> . 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    | Yes |
| 182 | IMG_8527.JPG | Right | Burned treated Melaleuca quinquenervia and burned prairie.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 643rmburn;<br>643burn              | Yes |
| 317 | IMG_6383.JPG | Left  | Mixed hardwoods; burned prairie; sparse burned treated Melaleuca quinquenervia.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 617; 643burn                       | Yes |
| 186 | IMG_8531.JPG | Right | Burned treated Melaleuca quinquenervia and burned prairie with sparse Myrica cerifera.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 643rmburn;<br>643burn;<br>643sburn | Yes |
| 323 | IMG_6389.JPG | Left  | Burned prairie; burned treated Melaleuca quinquenervia and burned prairie; mixed       64         hardwoods background.       64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    | Yes |
| 329 | IMG_6395.JPG | Left  | Mixed hardwoods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 617                                | Yes |
| 333 | IMG_6399.JPG | Left  | Mixed hardwoods; burned treated <i>Melaleuca quinquenervia</i> and burned prairie background. 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    | Yes |
| 337 | IMG_6403.JPG | Left  | Mixed hardwoods; burned treated Melaleuca quinquenervia and burned prairie.       6         6       6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    | Yes |
| 189 | IMG_8534.JPG | Right | Burned treated Melaleuca quinquenervia and burned prairie; background unburned mixed prairie with sparse treated Melaleuca quinquenervia and sparse swamp shrubs.       6-         6-       6-       6-         6-       6-       6-         6-       6-       6-         6-       6-       6-         6-       6-       6-         6-       6-       6-         6-       6-       6-         6-       6-       6-         6-       6-       6-         6-       6-       6-         6-       6-       6-         6-       6-       6-         6-       6-       6-         6-       6-       6-         6-       6-       6-         6-       6-       6-         6-       6-       6-         6-       6-       6-         6-       6-       6-         6-       6-       6-         6-       6-       6-         6-       6-       6-         6-       6-       6-         6-       6-       6-         6-       6-       6-     < |                                    | Yes |
| 344 | IMG_6410.JPG | Left  | Mixed hardwoods. 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    | Yes |
| 194 | IMG_8539.JPG | Right | Mixed Hardwoods foreground; background burned treated Melaleuca quinquenervia and<br>burned prairie       6         6       6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    | Yes |
| 352 | IMG_6418.JPG | Left  | Burned prairie; burned treated Melaleuca quinquenervia and burned prairie.       6         6       6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    | Yes |
| 198 | IMG_8543.JPG | Right | Burned treated <i>Melaleuca quinquenervia</i> and burned prairie; unburned mixed prairie with sparse treated <i>Melaleuca quinquenervia</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 643rmburn; Yes<br>643burn; 643     |     |
| 358 | IMG_6424.JPG | Left  | Burned treated <i>Melaleuca quinquenervia</i> and burned prairie; center burned prairie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 643rmburn; Ye<br>643burn           |     |
| 364 | IMG_6430.JPG | Left  | Burned treated <i>Melaleuca quinquenervia</i> and burned prairie; burned prairie; small patches of unburned mixed prairie.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 643rmburn;<br>643burn; 643         | Yes |
| 371 | IMG_6437.JPG | Left  | Burned treated <i>Melaleuca quinquenervia</i> and burned prairie; burned prairie; sparse burned treated <i>Melaleuca quinquenervia</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 643rmburn;<br>643burn              | Yes |


| Yes<br>yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes |
|---------------------------------------------------------------------------|
| ; Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes                    |
| Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes                             |
| Yes<br>Yes<br>Yes<br>Yes<br>Yes                                           |
| Yes<br>Yes<br>Yes<br>Yes<br>Yes                                           |
| Yes<br>Yes<br>Yes<br>Yes<br>Yes                                           |
| Yes<br>Yes<br>Yes<br>Yes                                                  |
| Yes<br>Yes<br>Yes                                                         |
| Yes<br>Yes                                                                |
| Yes                                                                       |
|                                                                           |
| m: Yes                                                                    |
| ,                                                                         |
|                                                                           |
| rm Yes                                                                    |
| 3                                                                         |
| rm Yes                                                                    |
|                                                                           |
| ; Yes                                                                     |
| n                                                                         |
|                                                                           |
| ; Yes                                                                     |
|                                                                           |
| ; Yes                                                                     |
|                                                                           |
|                                                                           |
| ;; Yes                                                                    |
|                                                                           |
| n Yes                                                                     |
|                                                                           |
| Yes                                                                       |
|                                                                           |

## Attachment H: Vegetation Monitoring Report: GIS Habitat Maps 2011, 2009, 2007 and 2005










## Attachment I: Vegetation Monitoring Report: Change Detection Maps and Table



### Appendix F: Change Detection 2011-2009

| 2011        |
|-------------|
| 2011 & 2009 |
| 2009        |

A: Muhly Wet Prairie B: Sawgrass Wet Prairie C: Mixed Wet Prairie D: Recovering Wet Prairie E: Low-Density Wet Prairie F: Scraped Wet Prairie

| FLUCFCS 2011   | FLUCFCS 2009  | Acre           | %      |
|----------------|---------------|----------------|--------|
| 631            | 643cs         | 0.007          | 0.002  |
| 631            | 643rm         | 0.099          | 0.024  |
| 631            | 643s          | 0.334          | 0.080  |
| 641t           |               | 0.009          | 0.002  |
| 641t           | 643cs         | 0.084          | 0.020  |
| 641t           | 643ms         | 0.120          | 0.029  |
| 641t           | 643s          | 0.231          | 0.055  |
| 641t           | 643sl         | 0.587          | 0.141  |
| 641t           | 643xsl        | 0.723          | 0.173  |
| 643cs          | 643cs         | 36.154         | 8.672  |
| 643cs          | 643ms         | 0.001          | 0.000  |
| 643cs          | 643rm         | 0.753          | 0.181  |
| 643cs          | 643s          | 8.527          | 2.045  |
| 643cs          | 643sl         | 0.011          | 0.003  |
| 643cs          | 643xsl        | 4.771          | 1.144  |
|                |               | 3.744          |        |
| 643ms          | 643cs         |                | 0.898  |
| 643ms          | 643ms         | 30.592         | 7.338  |
| 643ms          | 643rm         | 0.017          | 0.004  |
| 643ms          | 643s          | 52.971         | 12.706 |
| 643ms          | 643sl         | 0.015          | 0.004  |
| 643ms          | 643xsl        | 1.028          | 0.247  |
| 643rm          | 619mt         | 0.065          | 0.016  |
| 643rm          | 643cs         | 2.074          | 0.498  |
| 643rm          | 643ms         | 0.063          | 0.015  |
| 643rm          | 643rm         | 17.739         | 4.255  |
| 643rm          | 643s          | 3.994          | 0.958  |
| 643rm          | 643xsl        | 1.493          | 0.358  |
| 643rms         | 643rm         | 1.295          | 0.311  |
| 643rms         | 643s          | 0.534          | 0.128  |
| 643rms         | 643xsl        | 0.052          | 0.013  |
| 643s           |               | 0.001          | 0.000  |
| 643s           | 619mt         | 0.055          | 0.013  |
| 643s           | 643cs         | 16.657         | 3.996  |
| 643s           | 643ms         | 6.642          | 1.593  |
| 643s           | 643rm         | 2.136          | 0.512  |
| 643s           | 643s          | 93.512         | 22.430 |
| 643s           | 643sl         | 0.032          | 0.008  |
| 643s           | 643xsl        | 17.655         | 4.235  |
| 643sl          |               | 0.296          | 0.071  |
| 643sl          | 631           | 0.181          | 0.043  |
| 643sl          | 643cs         | 0.181          | 0.043  |
| 643sl          | 643ms         | 0.123          | 0.030  |
|                |               |                |        |
| 643sl<br>643sl | 643s<br>643sl | 6.450<br>3.388 | 1.547  |
|                |               |                | 0.813  |
| 643sl          | 643xsl        | 13.998         | 3.358  |
| 643xsl         | 643cs         | 27.158         | 6.514  |
| 643xsl         | 643ms         | 0.102          | 0.024  |
| 643xsl         | 643rm         | 4.507          | 1.081  |
| 643xsl         | 643s          | 19.386         | 4.650  |
| 643xsl         | 643sl         | 0.115          | 0.028  |
| 643xsl         | 643xsl        | 35.820         | 8.592  |
|                | 631           | 0.171          | N/A    |
|                | 643ms         | 0.010          | N/A    |
|                | 643s          | 0.414          | N/A    |
|                | 643sl         | 0.124          | N/A    |
|                | 643xsl        | 0.502          | N/A    |

### 2011 FLUCFCS Change Detection 2011 - 2009

### Attachment J: Field Notes

| empinyto                                         | n monitoria | Equipme    | nt         |                                              |      | 1                                                                     | 10 10000 /11                                  | Page 1 of 1_               |  |
|--------------------------------------------------|-------------|------------|------------|----------------------------------------------|------|-----------------------------------------------------------------------|-----------------------------------------------|----------------------------|--|
| Pole: 6 periphytometers w/slides<br>Palliga pole |             |            |            |                                              |      | Methods: Collection done according to SOP SFWMD-FIELD-SOP-025-<br>01. |                                               |                            |  |
|                                                  |             |            | Deployme   | nt                                           |      | Retrieval                                                             | 1                                             |                            |  |
| Project                                          | Site        | Time       | Tdepth (m) | Number of<br>Periphytom<br>eters<br>deployed | Time | Tdepth(m)                                                             | Number of<br>periphytom<br>eters<br>retrieved | Comments                   |  |
| CHIP                                             | 64238       | 1048       | 0          | 3                                            | 1130 | 0                                                                     | 3                                             | Site Dry                   |  |
| C4IP                                             | 6421P       | 1130       | 1.43       | 3                                            | 1100 | 7lm                                                                   | 3                                             | Site Dry<br>Retention Pond |  |
|                                                  |             |            |            |                                              |      |                                                                       |                                               |                            |  |
|                                                  | -           |            |            |                                              |      |                                                                       |                                               |                            |  |
|                                                  | ~           |            |            |                                              |      |                                                                       |                                               |                            |  |
|                                                  |             |            | ÷          |                                              |      |                                                                       | <u>.</u>                                      |                            |  |
|                                                  |             |            | - 11       |                                              |      |                                                                       |                                               |                            |  |
|                                                  | 2           |            |            |                                              |      | -                                                                     |                                               | -                          |  |
|                                                  |             |            |            |                                              |      |                                                                       |                                               |                            |  |
|                                                  |             |            | ÷          |                                              |      |                                                                       |                                               |                            |  |
|                                                  |             |            |            |                                              |      |                                                                       |                                               |                            |  |
|                                                  |             |            |            |                                              |      |                                                                       |                                               |                            |  |
|                                                  |             |            |            |                                              |      |                                                                       |                                               |                            |  |
|                                                  |             |            |            |                                              |      |                                                                       | -                                             |                            |  |
|                                                  | N           | 11         |            |                                              |      |                                                                       |                                               |                            |  |
|                                                  | Siteriture  | the second | h          | 30/11                                        |      | Reviewed B                                                            | lu /Date                                      | -                          |  |

### Periphyton Monitoring Field Notes

#### Incidental Wildlife Field Notes

4/25/11 MOP, NC EYIP 9,32 Incidential Wildlife Vulture (Turkey) Lubbers Dead Turtles

4/20/11 MOR, KAR Sires 8,36,1 Incidental Wildlife vultures Kildeer Northern Mocting Bird Lubber. turtles Dead Eastern Meadowlark Common night hawk Golden silk drb spider Turtles live Halloween permant dragonfly

(1/27/11 MOR, MOB, JA, MF Sittes. 26,46,51 Incidental wildlife Turkey Vulture Burrows (Tood) Lubbers Dead Turries

1/28/11 MOP, JA Incidental Wildlife LUbbers Pead Turtles Vultures Burrows

## Attachment K: Workshop Presentation

## **C4 Emergency Detention Basin** 2011 Workshop

September 27, 2011

# Workshop Agenda



## Introduction


## **Purpose of Construction:**

 To serve as an impoundment area which provides flood protection for City of Sweetwater and surrounding areas

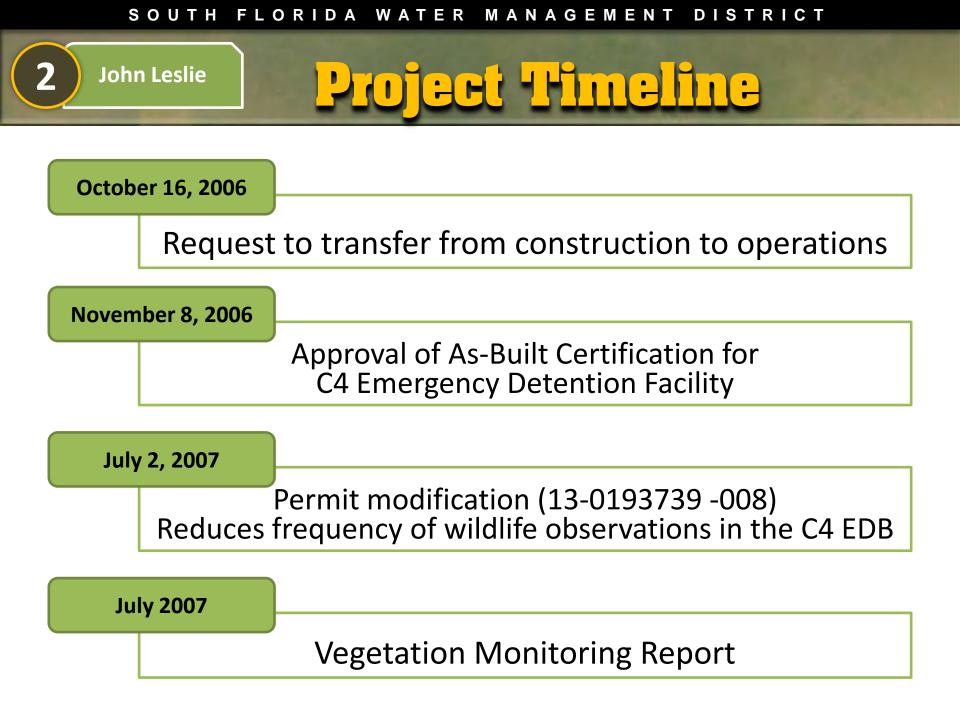


 The impoundment area comprises 855 acres and is divided into two basins: Phase I (north) and Phase II (south)

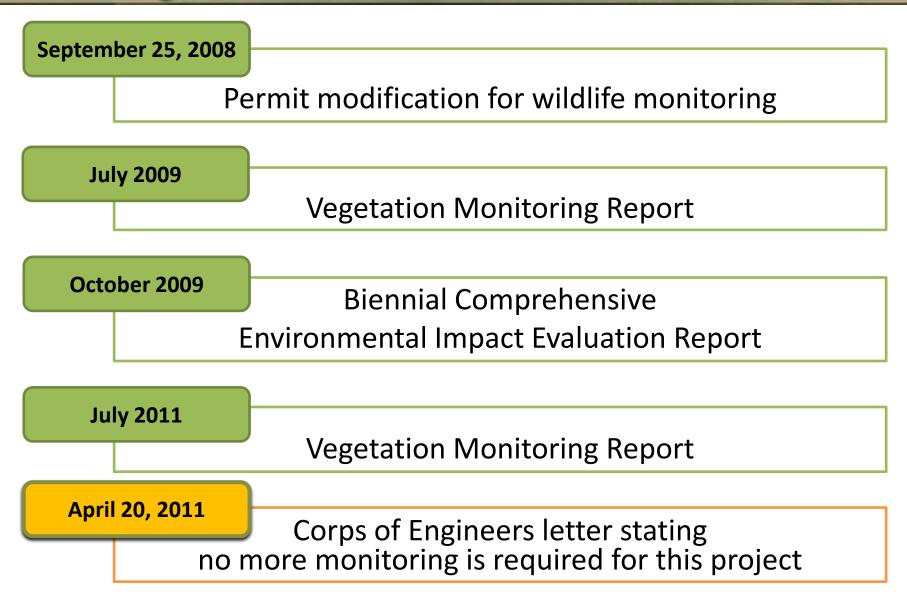
# **Project Site Location**



## Project Site Map







# Required Monitoring

## **Current Permit Required Monitoring**

| Parameter                           | Frequency                                            |  |  |
|-------------------------------------|------------------------------------------------------|--|--|
| Wildlife                            | Biennial                                             |  |  |
| Water Quality                       | Weekly<br>if Flowing (72 hr response) else Quarterly |  |  |
| Periphyton                          | Biennial                                             |  |  |
| Vegetation (intensive)              | Biennial                                             |  |  |
| Vegetation (routine groundtruthing) | Biennial                                             |  |  |
| Aerial Vegetation Surveys           | Biannual                                             |  |  |
| Reporting                           | Biennial                                             |  |  |
| Workshop                            | Biennial                                             |  |  |



## Project Timeline continued . . .



SOUTH FLORIDA WATER MANAGEMENT DISTRICT

# Next Agenda Topic



## Water Quality and Periphyton Methods

presented by Matt Powers

## **C4 Emergency Detention Basin**

2011 Workshop September 27, 2011

## Water Quality and Periphyton Monitoring Methods and Results

## **Matt Powers**

Environmental Scientist Water Quality Bureau

## Water Quality Monitoring Overview

- Pumps Operate for Emergency Flood Protection
- Sampling Stations are at 3 Structures: G420, G421, and G422
- Sampling frequency is weekly if recorded flow, otherwise quarterly only at G420
- Sampling is conducted in accordance with SFWMD Field Sampling Quality Manual (FSQM) and in compliance with DEP SOPs

## **C4** Water Quality Monitoring Stations



# Structures G420 and G421







## Water Quality Parameters Monitored

| Parameter | Sample Type     | PQL        | MDL        | Collection<br>Frequency |
|-----------|-----------------|------------|------------|-------------------------|
| TPO4      | Grab            | 8 μg/l     | 2 μg/l     |                         |
| TDPO4     |                 | 8 μg/l     | 2 μg/l     |                         |
| OPO4      |                 | 8 μg/l     | 2 μg/l     | Within 72 hours of      |
| ΤΚΝ       |                 | 0.200 mg/l | 0.05 mg/l  | operation, then         |
| TDKN      |                 | 0.200 mg/l | 0.05 mg/l  | weekly                  |
| NOX       |                 | 0.020 mg/l | 0.005 mg/l |                         |
| Temp.     | Field Parameter | n/a        | n/a        |                         |

# Water Quality Monitoring Results

### 9/1/09 to Present

| Station | Date      | TDKN | TKN  | NOX   | TDPO4 | OPO4 | TPO4 | TEMP |
|---------|-----------|------|------|-------|-------|------|------|------|
| Station | Collected | mg/l | mg/l | mg/l  | μg/l  | μg/l | μg/l | С    |
| G420    | 3/29/2010 | 1.2  | 1.2  | 0.014 | 2     | 2    | 6    | 24.2 |
|         | 5/27/10   | 1.1  | 1.1  | 0.011 | 2     | 2    | 6    | 25.6 |
|         | 9/01/10   | 1.2  | 1.2  | 0.005 | 5     | 3    | 7    | 26.1 |
|         | 9/30/10   | 1.3  | 1.3  | 0.059 | 5     | 2    | 7    | 25.8 |
|         | 12/01/10  | 1.3  | 1.3  | 0.005 | 3     | 2    | 9    | 25.9 |
|         | 3/01/11   | 1.2  | 1.3  | 0.005 | 2     | 2    | 9    | 24.7 |
|         | 06/2/11   | 1.1  | 1.1  | 0.005 | 2     | 2    | 5    | 25.5 |

Collection in **red** indicates sample was triggered by flow event; all other samples collected as part of quarterly permit requirement. All Data from DBHYDRO

### C4 Emergency Detention Basin 2011 Workshop

# Periphyton Methods and Monitoring

## Periphyton Monitoring Overview



- Periphyton is collected biennially
  - June to July during odd years
- Sample stations G423P and G421P
- Deployment of periphytometers over a 28-day period



## **Phase I Periphytometer Deployment**

# Phase I was completely dry during this reporting period; no samples collected

## Phase II Periphytometer Deployment

# Phase II was dry except for the retention pond at G420 pump station

### Phase II Retention Pond and Periphytometer Deployment Station

G420 Retention pond not representative of the ecology of area

Phase 2

# Phase II Conditions June 2011



## **Questions?**



## References

- DEP (Florida Department of Environmental Protection).
   2004. Standard Operating Procedures for Field Activities.
   Available at: <u>http://www.dep.state.fl.us/labs/qa/sops.htm</u>
- SFWMD (South Florida Water Management District) Water Quality Monitoring Division. 2011. Field Sampling Quality Manual. 6/07/09.
- SFWMD (South Florida Water Management District).
   DBHYDRO Browser. 9/01/11. <u>http://my.sfwmd.gov/</u>
- SFWMD (South Florida Water Management District) Water Quality Monitoring Division. 2011.
   025\_Taxonomic and Nutrient Periphyton Sampling\_SFWMD-FIELD-SOP-025-01

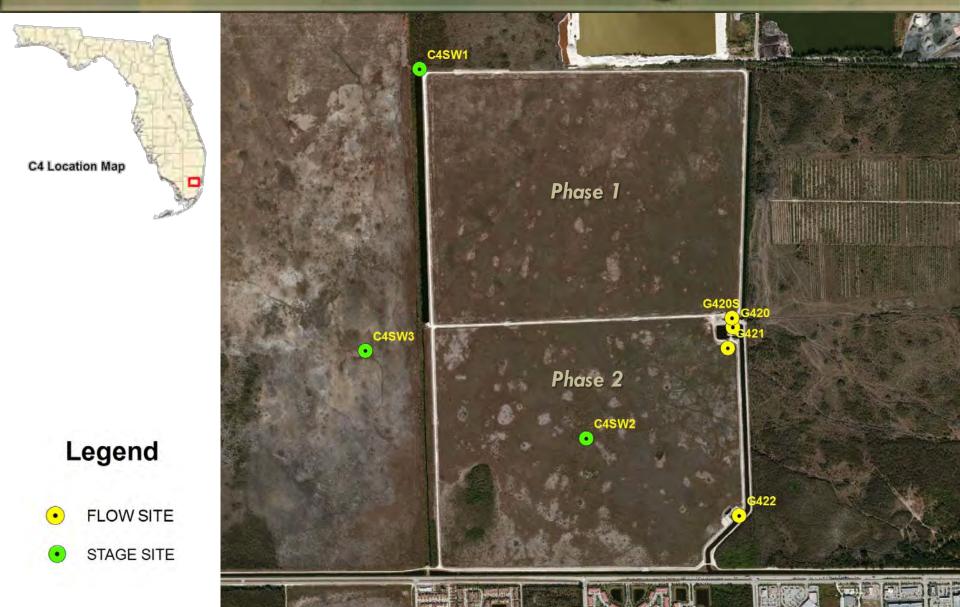
# Next Agenda Topic



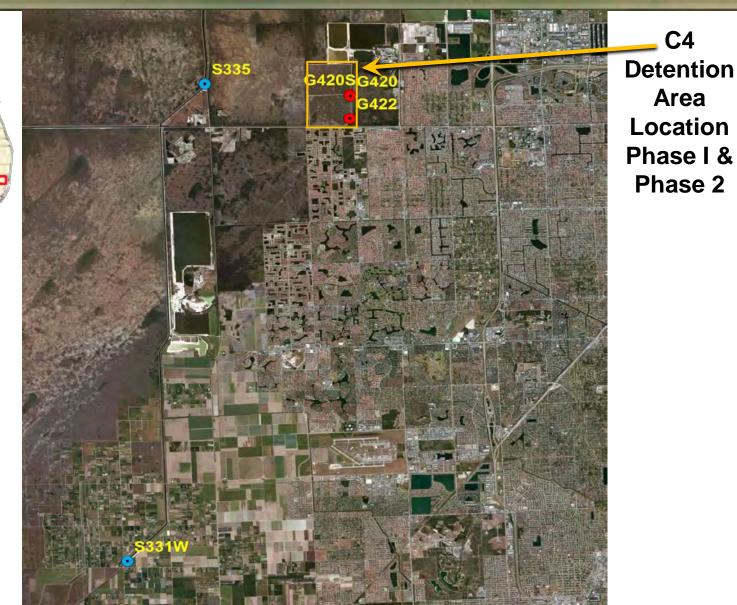
## Total Phosphorus Update

presented by Shi Xue

### **C4 Emergency Detention Basin**


2011 Workshop September 27, 2011

## Total Phosphorus Mass Budget May 1, 2009 - April 30, 2011


### Shi Xue

Sr. Environmental Scientist Water Quality Bureau

## Flow Stations and Stage Sites



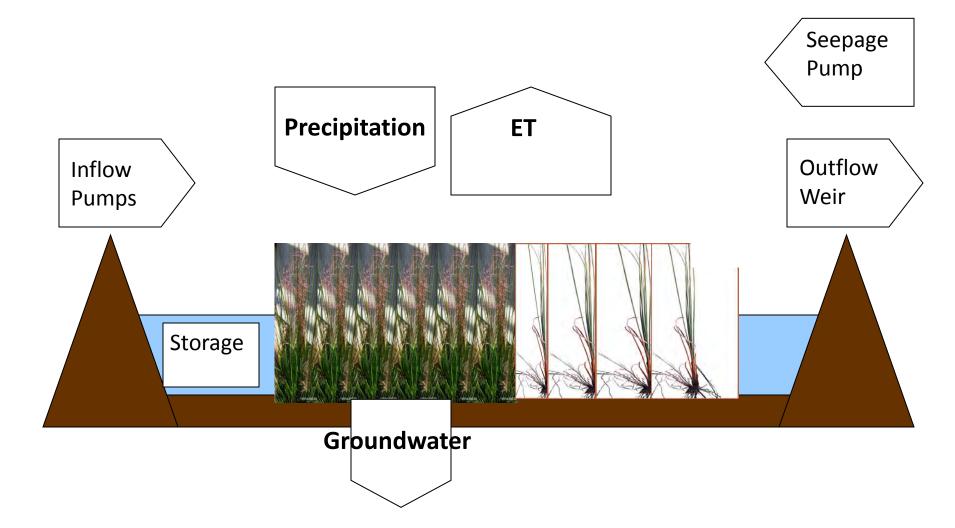
## Rainfall and ET Sites



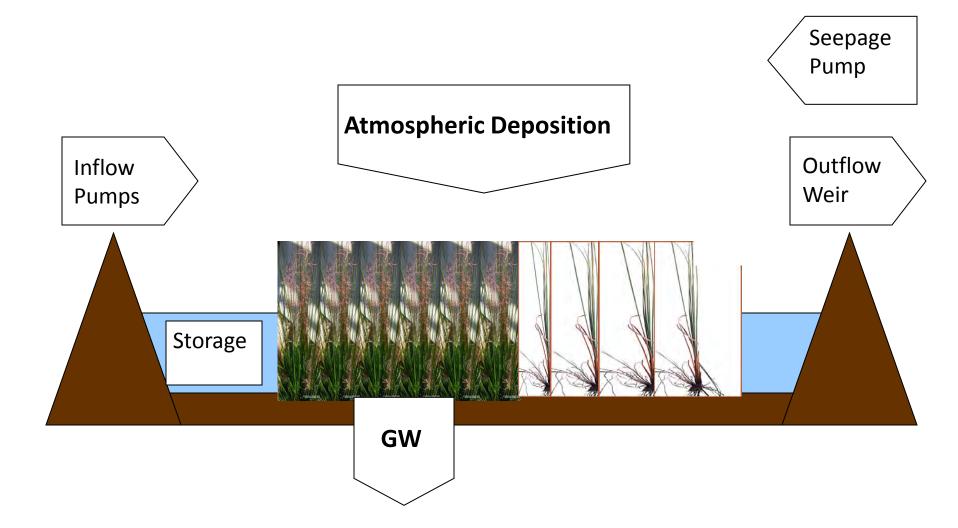







## Project Objectives

- To determine overall water and nutrient load into and out of the impoundment on event and biennial basis
- To provide environmental information for management of the impoundment


## Background

- Area: Phases I and II total 816 acres
- Maximum storage depth = 4 ft
- G420 and G422 pumps rated at 700 cfs and 585 cfs respectively
- Inflow pumps only operated when stage in C4 canal meets trigger criterion
- Discharge occurs only after flood stage peak has passed
- Operated once during biennial reporting period (May 1, 2009 – April 30, 2011)

# **General Conceptual Model of Water Budget for C4 EDB**



# **General Conceptual Model of Pollutant Mass Budget for C4 EDB**



## Methods

#### <u>Where:</u>

- I = inflow structure flows; loads
- R = rainfall volume
- ET = evapotranspiration loss
- Se = seepage (seepage water is offset water of recycle pump and can be set as 0)
- O = outflow weir volume; load
- D = atmospheric deposition of TP
- $\Delta S$  = change in water storage
- GW=groundwater
- $\Delta S_{tp}$  = change in TP storage

Water balance was calculated as:  $\Delta S = I + R - ET$  Se - O - GW (out)  $\Delta S = Stage_t - Stage_{t-1}$ 

 $GW (out) = I + R - ET \quad Se - O - \Delta S$  $GW (out) = I + R - ET - O - \Delta S$  $(when \quad Se = 0)$ 

TP mass budget was calculated as:

**Retained plus lost through groundwater flow:**  $\Delta S_{tp} + GW_{tp} (out) = I_{tp} + D_{tp} - O_{tp}$ 

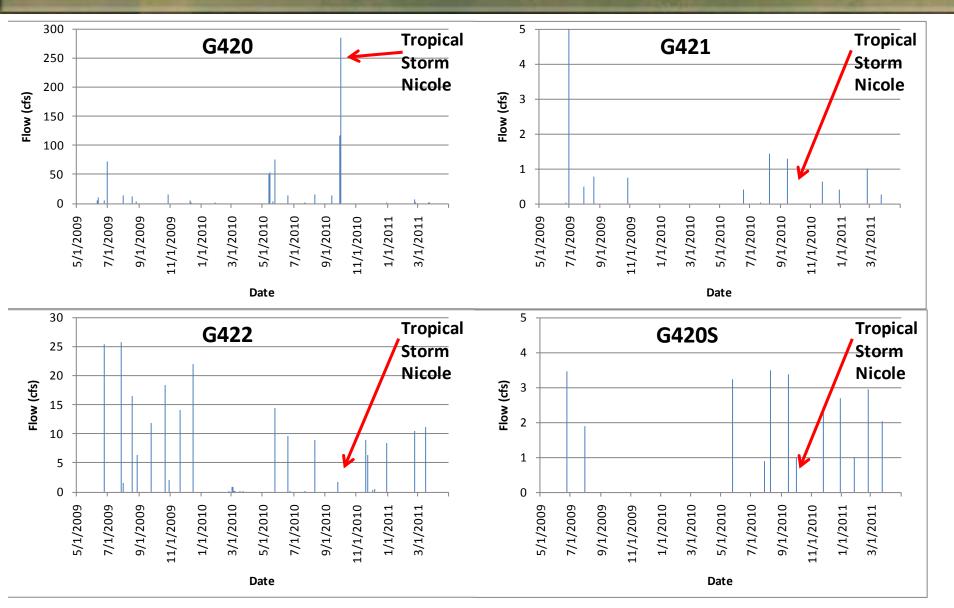
## Methods

- Daily rain depths obtained from the nearest station S335
- ET estimated using ET<sub>p</sub> data at S331W
- TP load calculated by multiplying TP concentration by corresponding water volume
- TP inflow and outflow loads calculated using Load Program
- TP atmospheric deposition calculated by multiplying area and deposition rate
- TP concentrations at G422 and G421 were estimated with concentration at G420 which was the only site measured for the period

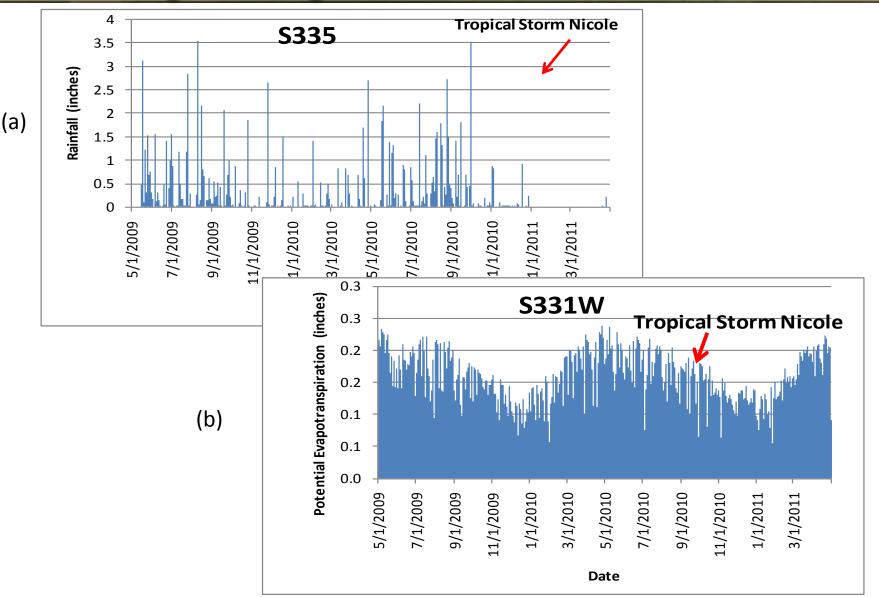
## Water Budgets (inches)

|                                  | WY2010 | WY 2011 | Total |
|----------------------------------|--------|---------|-------|
| Precipitation                    | 66.9   | 47.2    | 114.0 |
| ET                               | 51.3   | 52.3    | 103.5 |
| Inflow                           | 8.6    | 22.2    | 30.8  |
| Outflow                          | 0.2    | 0.2     | 0.4   |
| Seepage (recycles)               | 0.2    | 0.8     | 0.9   |
| Hydrological<br>(Storage change) | 24.7   | -26.6   | -1.9  |
| GW*                              | -0.7   | 43.5    | 42.8  |

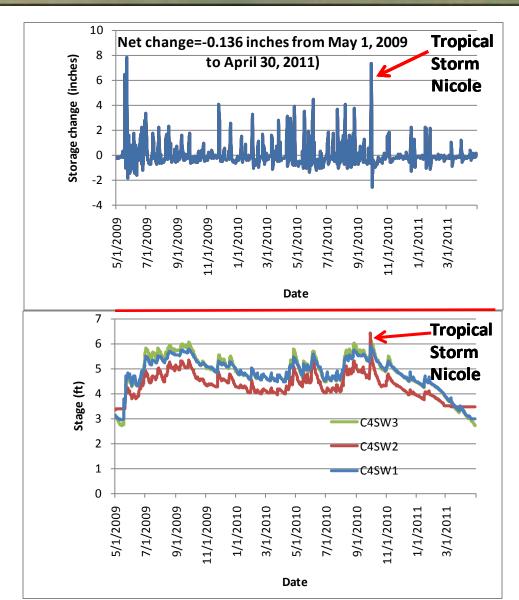
\**GW* =*I*+*R* –*ET* -*O*-Δ*S* 


## TP Mass Balance (Kg)

|                                                       | WY2010 | WY 2011 | Total | Tropical Storm<br>Nicole (September<br>29-30 2010) |
|-------------------------------------------------------|--------|---------|-------|----------------------------------------------------|
| Atmospheric<br>Deposition                             | 119.0  | 119.0   | 238.0 | 0.7                                                |
| Inflow                                                | 4.5    | 12.6    | 17.1  | 6.9                                                |
| Outflow                                               | 0.1    | 0.1     | 0.2   | 0                                                  |
| Retained plus<br>lost through<br>groundwater<br>flow* | 123.4  | 131.5   | 254.9 | 7.5                                                |
| Percentage                                            |        |         | 93%   | 91%                                                |


\*Retained plus lost through groundwater flow

 $=\Delta S_{tp} + GW_{tp} = I_{tp} + D_{tp} - O_{tp}$ 


## Flows



### Rainfall at S335 (a) and Evapotranspiration at S331W (b)



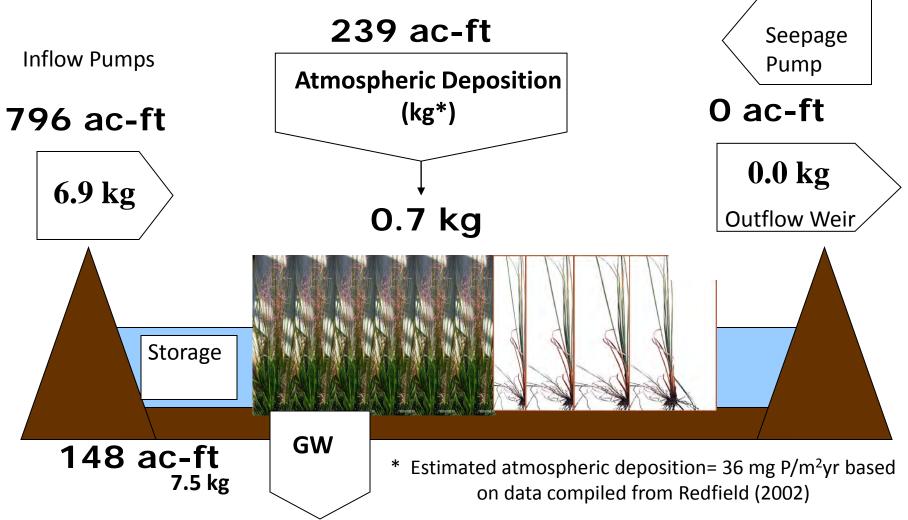
## Water Storage Change (a) and Stage (b)



Ground elevation~ 5.1 ft\*

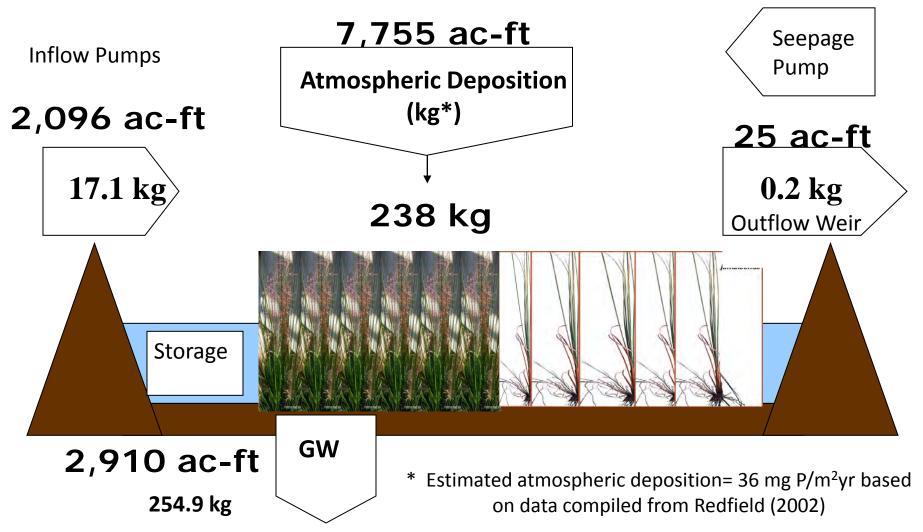
(a)

(b)


## Water and TP Budget Results

## Individual Event

 Biennial Reporting Period: May 2009 - April 2011


TP Mass Budget Diagram by Pumping Event 9/29-9/30, 2010 (Tropical Storm Nicole)

#### **Detention Area is 816 Acres**



### **TP Mass Budget Diagram for Biennial Reporting Period**

### (May 1, 2009-April 30, 2011)



## Findings

- The major inflow components to the water budget were precipitation, and minor inflow component was surface inflow; the major outflow components are ET and groundwater loss (GW)
- The C4 EDB was a net sink for TP for the one reportable event associated with Tropical Storm Nicole, with 91% TP retention plus loss through groundwater
- The C4 EDB was a net sink for TP for the biennial reporting period (May 1, 2009–April 30, 2011), with more than 93% TP retention plus loss through groundwater
- Surface water inflow loads predominated on event basis, but atmospheric deposition predominated for biennium
- Mean TP concentrations were 7 ppb in the C4 EDB which is less than 10 ppb, the numerical TP Water Quality Criterion for the Everglades, for the biennial reporting period

## Next Agenda Topic



## Vegetation Monitoring Results

presented by Ken Chen

#### **C4 Emergency Detention Basin**

2011 Workshop September 27, 2011

## Vegetation Monitoring Results

2011 Aerial Interpretation for Vegetation Mapping at the C4 Emergency Detention Basin (EDB)

> Ken Chen, Ph.D. Sr. Supervising Geographer Water Quality Bureau

## **Project Location**

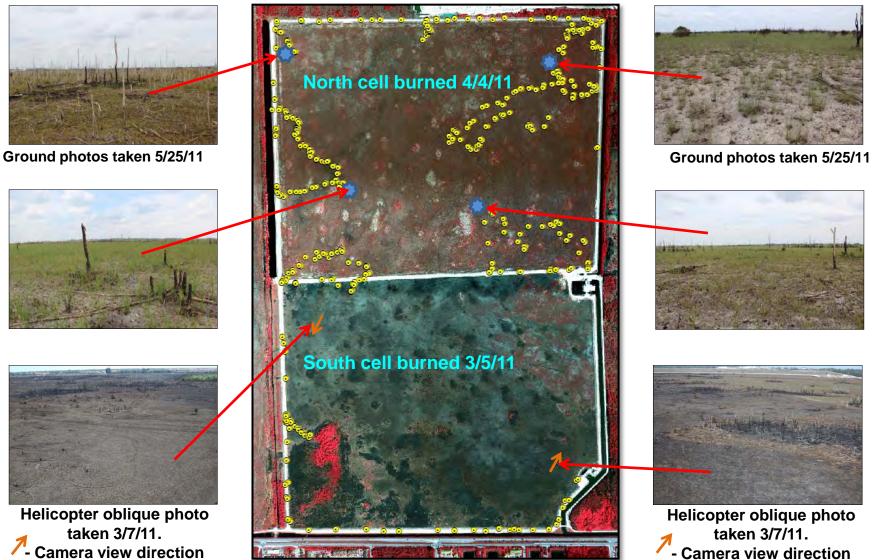


#### C4 Emergency Detention Basin Phase 1 & Phase 2, Miami-Dade Co., Florida



## Background

### 1. C4 EDB biennial vegetation mapping involves two parts:


- Part 1: Aerial photointerpretation (veg. cover update and change analysis)
- Part 2: Ground-survey based veg. mapping (11 intensive ground sites)
- 2. Aerial photointerpretation includes (theoretically) several major components:
  - Aerial photography collection & processing (e.g., aero-triangulation)
  - Photointerpretation using FLUCFCS code system
  - Groundtruthing to support photointerpretation
  - Creation of vegetation maps
  - Groundtruthing to quantitatively validate mapping results (i.e., mapping accuracy assessment)
  - Vegetation cover change detection (compare with previous years' vegetation maps)

## **Timetable of Events**

- 1. March 2, 2011: Pre-flight ground targets/ground control points set up
- 2. March 5, 2011: Uncontrolled burn (south cell/Phase 2)
- 3. March 7, 2011:
  - a) Aerial imagery acquisition
  - b) High-resolution oblique photos of helicopter transects collection (taken 5-25m AGL, ~700 photos for all FLUCFCS communities, GPSed/registered)
- 4. April 4, 2011: Controlled burn (north cell/Phase 1)
- 5. April 20, 2011: C4 field visit with FDEP staff regarding modifications to the groundtruthing methods used in previous years
- 6. May 25, 2011: Simple field assessment

# Burns in North and South Cells

#### Aerial IR Imagery Acquired 3/7/11



SOUTH FLORIDA WATER MANAGEMENT DISTRICT

### Rationale for Modifications to 2011 Vegetation Mapping Methods

### GROUNDTRUTHING IN NORTH AND SOUTH CELLS WAS PLANNED FOR MAY 2011, BUT BURNS CHANGED EVERYTHING .....

#### SOUTH CELL:

- landscape changes occurred from the <u>3/5/11 burn</u> in south cell
- aerial photointerpretation of south cell, NOT meaningful for reporting vegetation conditions prior to burn

#### NORTH CELL:

- 3/7/11 aerial imagery still valid, north cell not affected by 3/5/11 burn
- 3/7/11 helicopter transects photos of can be used for "quasi-groundtruthing" or "air-truthing" of north cell
  - the "air-truthing" method is inconsistent with the traditional method
  - change analysis (comparison between 2011 veg. maps with previous years')
     CANNOT be quantitatively done
  - Qualitatively only
- landscape changes occurred from the <u>4/4/11 burn</u> in north cell
- traditional groundtruthing, NOT meaningful/useful to support aerial photointerpretation of north cell

### Rationale for Modifications (continued)

### CONSENSUS OF THE 4/20/11 JOINT (FDEP & SFWMD) C4 FIELD VISIT:

- 1. Vegetation mapping of the south cell is NOT needed
- 2. "Air-truthing" is an acceptable method to support aerial photointerpretation of north cell
- 3. Qualitative change analysis of vegetation conditions is acceptable
- 4. Continue the ground-survey based veg. mapping (11 intensive ground plots) as it could be a good baseline information for future reference/assessment

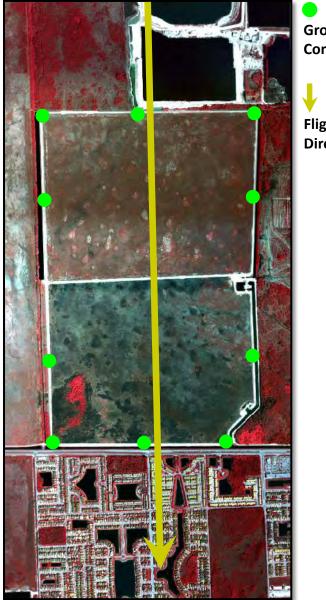


4/20/11 joint field tour by FDEP & SFWMD at C4 EDB

## Scope of Work

- **1. Task 1:** A Simple Ground Survey (north and south cells)
- 2. Task 2: Processing of Helicopter-based High Resolution Oblique Photographs (north cell)
- **3. Task 3:** GIS Vegetation Mapping and Accuracy Assessment (north cell)
  - Photointerpret results and assign predominant veg. types to polygons
  - Develop GIS vegetation maps
  - Conduct GIS veg. map accuracy assessment
- 4. Task 4: Qualitative Vegetation Change (GIS Change) Analysis (north cell)
- 5. Task 5: Prepare and Submit Photointerpretation and Accuracy Assessment Report
  - Prepare and submit 2011 report
  - Prepare and submit vegetation analysis report based on the comparison of previous vegetation maps and the 2011 maps
- 6. Task 6: Vegetation Mapping of South Cell (optional)
- 7. Task 7: Vegetation Map Accuracy Assessment of South Cell (optional)

### **Aerial IR Imagery:**


- **Imagery Acquisition:** 
  - 2011 Aerial imagery collection: 3/7/2011
  - Flight: Single north-south line
  - Image Type: RGB Infrared (IR) Imagery
  - Ground Sampling Distance (GSD): 6"
  - Number of Exposures: 25
  - Overlap: 90% (along-track)
- Ground Survey/Control Targets:
  - **Ground Survey/Control Targets: 10 stations** (same as 2005, 2007 & 2009)
  - Each Target: 8' x 8' x 2'
  - Targets Deployment: completed by SFWMD prior to aerial imagery acquisition
  - **Targets Maintenance: verified and repaired** where necessary

Ground survey/control targets were set up on 3/2/2011

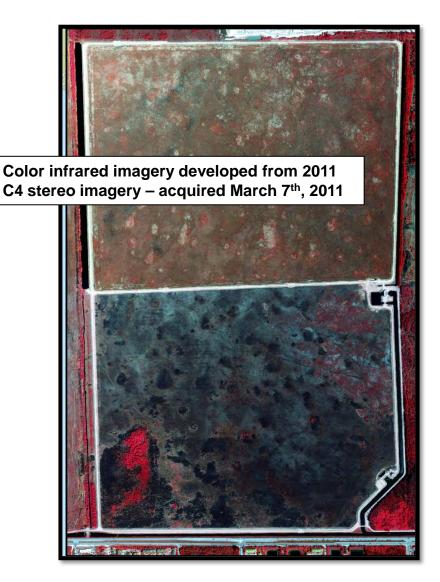




#### **Aerial Image Flight and Control Layout**



**Ground Survey**/ **Control Points** 




Flight Path & Direction

## **Aerial IR Imagery Processing**

### Geo-referencing:

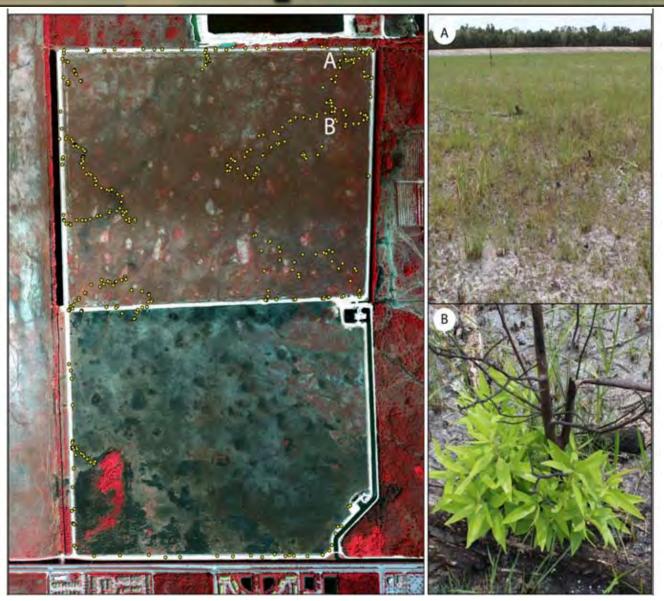
- To correct geometric distortions and register geospatial information
- Horizontal: NAD83/HARN, State Plane Coordinate System, Florida East Zone 0901
- Units: U.S. survey feet
- Digital Aero-triangulation (AT):
  - to develop stereo models
- Aero-triangulation accuracy:
  - <1 ft (meeting the horizontal positional accuracy of 9.84 feet at 95% confidence interval)



SOUTH FLORIDA WATER MANAGEMENT DISTRICT

### Aerial Oblique Photos of Helicopter Transects




- Collection: 3/7/2011
- High Resolution: taken 5-25m above ground
- GPSed and registered
- Nearly 700 photos for all FLUCFCS communities

A - patchy muhly wet
 prairie adjacent
 mixed/recovering prairie,
 Phase 1

B – Burned recovering wet
 prairie adjacent burned
 prairie with sparse wax
 myrtle, Phase 2

*C* – tree island surrounded by burned recovering wet prairie, Phase 2

## Simple Ground Survey



- Field Survey: 5/25/2011
- Purpose: Although scaled back as a result of burns, a simple field assessment was deemed helpful to develop a better prospective of C4 EDB's topography, hydrology, wildlife and returning community vegetation.
- >450 field photos were taken to support vegetation mapping

### Vegetation (Habitat/Community) Mapping

- Data from previous monitoring events, helicopter transects, and the simple ground survey, combined with FLUCFCS
  - generate a list of habitat types to be used in mapping process
- A softcopy photogrammetric workstation was used for the initial mapping
- Each habitat/community polygon was captured stereoscopically using CIR imagery
- Minimum mapping units: 10 m x 10 m
- High resolution oblique photo helicopter transects were used to develop unique spectral and spatial signatures
  - to separate complex and blended ecotones (e.g., sawgrass dominated wet prairie, mixed wet prairie, muhly dominated wet prairie)

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

### Florida Land Use Cover and Forms Classification System (FLUCFCS)

- A modified FLUCFCS code system was used to account for the variations in the observed wet prairie communities
- Five different habitat classes were added to the FLUCFCS codes used in 2009:
  - The class 643rms (recovering wet prairie/shrub in treated melaleuca) was added to account for the emerging co-dominance of shrubs in recovering areas
  - The class 641t (cattail marsh) was added as it was now possible, with aid of 2011 imagery and field data, to positively identify cattail (*Typha spp.*)
  - The final three (3) changes were added to accommodate for the burned vegetation in Phase II
- Totally 13 FLUCFCS codes/habitat classes were used in 2011 vegetation mapping

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

### Florida Land Use Cover and Forms Classification System (FLUCFCS)

#### Comparison of FLUCFCS Codes Used in 2005 - 2011

| FLUCFCS   | Description                                           | '05 | '07 | '09 | '11 | Notes                                                                 |
|-----------|-------------------------------------------------------|-----|-----|-----|-----|-----------------------------------------------------------------------|
| 617       | Tree Island                                           | Х   | Х   | Х   | X   |                                                                       |
| 619m      | Melaleuca                                             | Х   | Х   |     |     | None observed in 2011                                                 |
| 619mca    | Melaleuca-Casuarina Mix                               | Х   |     |     |     | None observed in 2011                                                 |
| 619mt     | Treated Melaleuca                                     | Х   | Х   | Х   |     |                                                                       |
| 631       | Wetland Shrub                                         | Х   |     | X   | X   |                                                                       |
| 631burn   | Burned Wetland Shrub                                  |     |     |     | Х   | Limited to Phase II in 2011                                           |
| 641t      | Cattail Marsh                                         |     |     |     | Х   |                                                                       |
| 643cs     | Sawgrass Wet Prairie                                  | Х   | Х   | Х   | X   |                                                                       |
| 643ms     | Muhly Wet Prairie                                     | Х   | Х   | X   | X   |                                                                       |
| 643rm     | Recovering Wet Prairie in<br>Treated Melaleuca        |     | x   | x   | x   |                                                                       |
| 643rmburn | Burned Recovering Wet<br>Prairie in Treated Melaleuca |     |     |     | X   | Limited to Phase II in 2011                                           |
| 643rms    | Recovering Wet Prairie<br>/Shrub in Treated Melaleuca |     |     |     | x   | Areas showing co-dominant prairie/shrub mix in 2011                   |
| 643s      | Mixed Wet Prairie                                     | x   | x   | x   | x   | Combined 643s and 643xs into one class in 2007, took name of Mixed WP |
| 643sburn  | Burned Mixed Wet Prairie                              | Х   | Х   |     | Х   | Limited to Phase II 2011                                              |
| 643sl     | Scraped Wet Prairie                                   | Х   | Х   | Х   | Х   |                                                                       |
| 643t      | Treated Wet Prairie                                   | Х   |     |     |     | None observed in 2011                                                 |
| 643xs     | General Wet Prairie                                   | Х   |     |     |     | Code became 643s description changed                                  |
| 643xsl    | Low Density Wet Prairie                               | Х   | Х   | X   | X   |                                                                       |

Note: the highlighted are 5 new classes added to the FLUCFCS codes used in 2009

# 2011 FLUCFCS Keys



(643s) Mixed Wet Prairie



(641t) Cattail Marsh



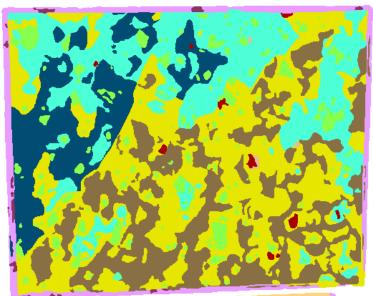
(643cs) Sawgrass Wet Prairie



(643ms) Muhly Wet Prairie



(643rms) Recovering Wet Prairie in Treated Melaleuca Stands & Recovering Wet Prairie /Shrub in Treated Melaleuca

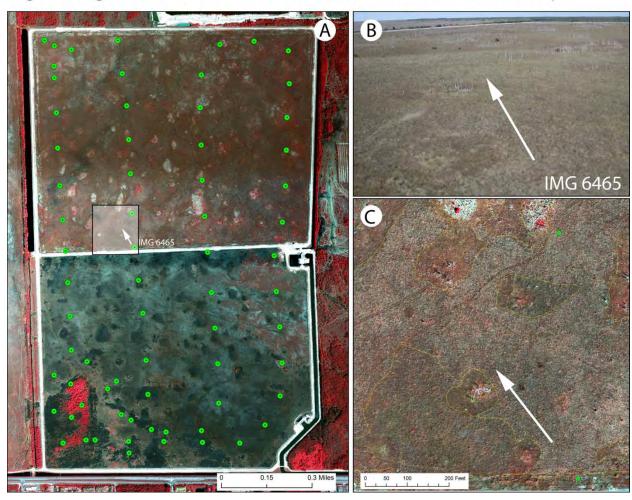




(643xsl) Low-Density Wet Prairie

## **2011 Customized FLUCFCS Codes**










# Vegetation Mapping Accuracy

Figure 5: High Resolution Transect Ground Controls and Photo Point Example

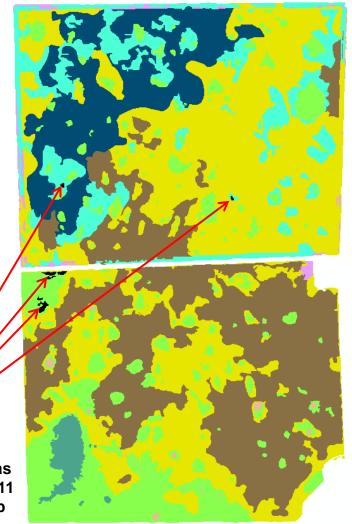


A) Transect Quality Point Overview. ~200-yard intervals between points (oblique photo locations).
 B) Photo example muhly wet prairie and interface between mixed prairie and muhly.
 C) Close-up of ortho-image inset, including class boundaries.

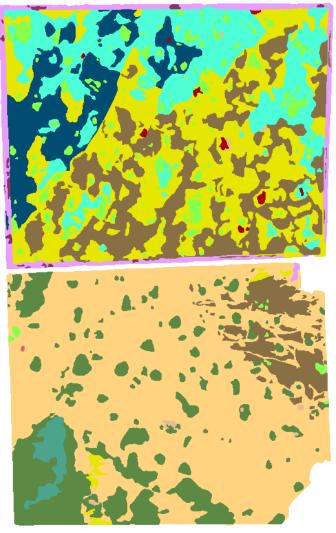
- 90+% mapping accuracy was required in prior years
- The Quality Control method for accuracy had to be modified as it was not possible to create a quantitative Confusion Matrix due to burns --> qualitative assessment using helicopter photo transects
- 106 points chosen for accuracy analysis. They were not used for veg. mapping
- Of the 106 oblique photos checked, a total of 222 unique habitat locations identified, spanning all 13 available FLUCFCS codes
- Of the 106 transect "air-truthing" stations, all but 2 were found to match well with the designated habitat classification in the GIS vegetation map

## Habitat Quantification

| FLUCFCS<br>CODE | HABITAT                                               | PHASE I<br>(ac) | PHASE I<br>(% Cover) | PHASE II<br>(ac) | PHASE II<br>(% Cover) |
|-----------------|-------------------------------------------------------|-----------------|----------------------|------------------|-----------------------|
| 617             | Mixed Wetland Hardwoods (Tree Island )                | -               | -                    | 8.15             | 2.10                  |
| 631             | Wetland Shrub                                         | 0.44            | 0.11                 | 0.94             | 0.24                  |
| 631burn         | Burned Wetland Shrub                                  | -               | -                    | 0.09             | 0.02                  |
| 641t            | Cattail Marsh                                         | 1.75            | 0.42                 | -                | -                     |
| 643cs           | Sawgrass Wet Prairie                                  | 50.22           | 12.05                | -                | -                     |
| 643ms           | Muhly Wet Prairie                                     | 88.37           | 21.20                | 26.33            | 6.76                  |
| 643rm           | Recovering Wet Prairie in treated<br>Melaleuca        | 25.43           | 6.10                 | 1.43             | 0.37                  |
| 643rmburn       | Burned Recovering Wet Prairie in treated<br>Melaleuca | -               | -                    | 78.57            | 20.18                 |
| 643rms          | Recovering Wet Prairie/Shrub in treated<br>Melaleuca  | 1.88            | 0.45                 | -                | -                     |
| 643s            | Mixed Wet Prairie                                     | 136.69          | 32.78                | 3.15             | 0.81                  |
| 643sburn        | Burned Mixed Wet Prairie                              | -               | -                    | 270.16           | 69.40                 |
| 643sl           | Scraped Wet Prairie                                   | 25.04           | 6.00                 | 0.49             | 0.13                  |
| 643xsl          | Low Density Wet Prairie                               | 87.08           | 20.89                | -                | -                     |
|                 | TOTAL                                                 | 416.90          | 100                  | 389.31           | 100                   |


2009 Aerial Imagery of C4 EDB




#### 2011 Aerial Imagery of C4 EDB



#### 2009 GIS Vegetation Map of C4 EDB



#### 2011 GIS Vegetation Map of C4 EDB

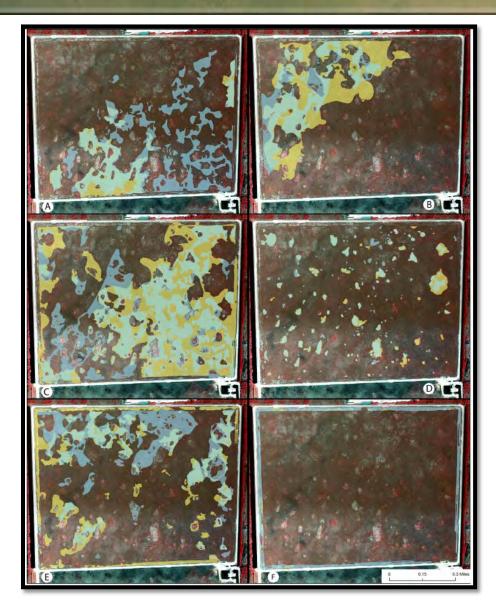


(619mt) – Treated Melaleuca class was not observed in 2011 GIS vegetation map

#### Class Agreement between 2011 Phase I and 2009 Phase I

| FLUCFCS 2011 | FLUCFCS 2009 | Acre   | % Cover (2011) |
|--------------|--------------|--------|----------------|
| 643cs        | 643cs        | 36.15  | 8.67           |
| 643rm        | 643rm        | 17.74  | 4.26           |
| 643s         | 643s         | 93.50  | 22.43          |
| 643sl        | 643sl        | 3.39   | 0.81           |
| 643xsl       | 643xsl       | 35.82  | 8.59           |
| 643sl        | 643xsl       | 14.00  | 3.36           |
| 643ms        | 643ms        | 30.60  | 7.34           |
| Total:       |              | 231.20 | 55.46          |

#### Class Disagreement between 2011 Phase I and 2009 Phase I


| FLUCFCS 2011 | FLUCFCS 2009 | Acre   | % Cover (2011) |
|--------------|--------------|--------|----------------|
| 643cs        | 643s         | 8.53   | 2.05           |
| 643ms        | 643s         | 52.97  | 12.71          |
| 643s         | 643cs        | 16.66  | 4.00           |
| 643s         | 643xsl       | 17.66  | 4.24           |
| 643sl        | 643s         | 6.45   | 1.55           |
| 643xsl       | 643cs        | 27.16  | 6.50           |
| 643xsl       | 643s         | 19.39  | 4.65           |
| Other        |              | 36.90  | 8.84           |
| Total:       |              | 185.72 | 44.54          |

- Change detection is analysis for the same geographic area at different times to determine habitat change
- Within Phase I, ~ 56% of the total area remains unchanged from 2011 to 2009
- Of the remaining ~44%, ~36% can be attributed to 7 class transitions
- The greatest transition is from mixed wet prairie in 2009 to muhly prairie in 2011 (~13%). Ref. to tables in previous slide



A: Muhly Wet Prairie B: Sawgrass Wet Prairie C: Mixed Wet Prairie D: Recovering Wet Prairie E: Low-Density Wet Prairie F: Scraped Wet Prairie

Change Detection 2011-2009: for each of the popular habitats/communities



### **CAUSE OF CHANGES:**

- **1. NATURAL CHANGES**
- 2. Different types of imagery between 2009 and 2011
- 3. Different weather conditions (drier in 2011???)
- 4. Different methods used in groundtruthing and validation (due to burns)
- 5. Different mapping units(2009 coarse??? 10m x 10m in 2011 vs ??? in 2009)
- 6. Discrepancies in applying FLUCFCS codes

#### **Matt Powers**

## ncidental Wildlife Sightings

- **Common nighthawk** (Chordeiles minor)
- **Eastern meadowlark** (Sturnella magna)
- Northern mockingbird (Mimus polyglottos)
- Halloween pennant dragonfly (Celithemis eponina)
- **Killdeer** (*Charadrius vociferus*)
- **Turkey vulture** (*Cathartes aura*)
- **Southern Toad** (Anaxyrus terrestris)
- Lubber (Romalea microptera)
- **Golden Silk Orb Spider** (Nephila sp)
- **Turtle** (unknown species)



HALLOWEEN PENNANT DRAGONFLY Celithemis eponina

#### SOUTH FLORIDA WATER MANAGEMENT DISTRICT

|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                          | Existing C     |                   | Proposed C            |                        | -                           |                           |  |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------|----------------|-------------------|-----------------------|------------------------|-----------------------------|---------------------------|--|--|
|         | Application Nu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       | EDB 8                                    | te<br>/16/2011 | 1                 | Evaluato              |                        |                             | tland Type<br>et Prairie  |  |  |
|         | - Contraction of the local division of the l | 0                                                     | 8                                        | 16/2011        | 1                 | SPWINL                | <u></u>                | W                           | et Frame                  |  |  |
|         | Wildlife Utilization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Wildlife Utilization (WU) FLUCCS Code Wetland Acreage |                                          |                |                   |                       |                        |                             |                           |  |  |
|         | Wet Prairi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |                                          |                | ulhly or Sawe     | grass dominated       | wetland                | 800                         | rich cobe                 |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | 015                                      |                |                   |                       |                        | 000                         |                           |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Habita                                                | t Support / B                            | uffer          | 1                 |                       |                        |                             |                           |  |  |
|         | Buffer type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Score) X (% of area) = Sub Totals                    |                                          |                |                   | Wetland Canop         | v (0/5)                | Wetland G                   | round Cover (GC)          |  |  |
|         | Hwy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                     | 25 0                                     |                | 1                 | N/A                   | 1 1-1-1                |                             | 2.5                       |  |  |
|         | Rock Pit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                     | 12.5                                     | 0              |                   | Field Hydrology       | (HYD)                  | WQ Input                    | & Treatment (WQ)          |  |  |
|         | Natural Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.5                                                   | 62.5                                     | 1.56           |                   | 2                     |                        |                             | 2.75                      |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                          |                | Total             |                       |                        | -                           |                           |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                          |                | 1.56              |                       |                        |                             |                           |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | _                                        |                |                   |                       | . X                    |                             | 1.0                       |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L                                                     | and Use Cate                             | gory           |                   |                       | Pretreat               | ment Category (P            | T)                        |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | gory (Score) X (S                        | -              | Sub Totals        | P                     |                        | ory (Score) X (% of an      |                           |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                     |                                          |                |                   | 1 Г                   |                        |                             |                           |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                     |                                          |                | -                 | 1 1                   |                        |                             | 1                         |  |  |
| WRAP    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                          |                | -                 | 1 1                   |                        |                             |                           |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                          | _              |                   | 4 F                   |                        |                             | -                         |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                          | -              | -                 | 4 F                   |                        |                             | -                         |  |  |
|         | WEAD Course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       | -                                        |                |                   | 4 4                   |                        |                             |                           |  |  |
| Scoring | WRAP Score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - C"                                                  | (LU                                      | ) total        | N/A               |                       |                        | (PT) Tota                   | N/A                       |  |  |
| Scoring | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8                                                     |                                          |                |                   |                       |                        |                             |                           |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                     |                                          |                |                   |                       |                        |                             |                           |  |  |
|         | Wildlife Utilization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | 20.20          |                   |                       |                        |                             |                           |  |  |
|         | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Evidence                                              | of wetland utilizat                      | ban by small   | mammals and       | reptiles. Minimal e   | vidence of human di    | sturbance. Loss of cover    | due to burn.              |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                          | _              | _                 |                       |                        |                             |                           |  |  |
|         | Wetland Canopy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       | ie natione subihit                       | limited or an  |                   | er and therefore is   | not reviewed A room    | Il tree island is located i | Phase 2 but is lass       |  |  |
|         | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       | of total area and n                      |                |                   | a and therefore is    | NULLEVIE WELL A SIDE   | in precisione is rousied i  | in Findade a pros to 1633 |  |  |
|         | IN/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Const Const                                           |                                          |                |                   |                       |                        |                             |                           |  |  |
|         | Wetland Ground Cove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | er (GC)                                               |                                          |                | _                 |                       |                        |                             |                           |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Less then                                             | 25% undesirable :                        | species in we  | tland. Limite t   | o no human inpects    | in wetland. Area su    | ject to peroxidic burns     | for enhavement of gr      |  |  |
|         | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                          |                |                   |                       |                        |                             |                           |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1                                                   |                                          |                |                   |                       |                        |                             |                           |  |  |
|         | Habitat Support / But                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       | bordered by Hwy                          | 41 to south a  | nd rockpit to r   | orth both offer littl | e to no habitat supp   | ort. Wetland bordered b     | w natural area to         |  |  |
|         | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                          |                |                   |                       | undesirable species    |                             |                           |  |  |
|         | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                          |                | 1000              | and the second        |                        |                             |                           |  |  |
|         | Field Hydrology (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HYD)                                                  |                                          |                |                   |                       | _                      |                             |                           |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | Hydropeniod adea                         | uate. Pump e   | activities result | ted in stacking on o  | ne occasion            |                             |                           |  |  |
|         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       |                                          |                |                   |                       |                        |                             |                           |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                          |                |                   |                       |                        |                             |                           |  |  |
|         | WQ Input & Tretmer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (DW)                                                  | cieves majority of                       | water from     | min. Pumpine      | from C4 canal seco    | od largest source of a | ater. Mean TP concent       | ations in the C-4 FDB     |  |  |
|         | 2.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |                                          |                |                   | Criterion for the E   |                        |                             |                           |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                          |                |                   |                       |                        |                             |                           |  |  |

## **Intensive Vegetation Surveys**

- 11 Intensive vegetation sites
- 10 x 10 meter quadrats
- Surveyed for species and percent cover

- Surveys completed after prescribed burn in Phase 1
- Surveys completed after wildfire in Phase 2

## **Intensive Vegetation Survey Results**

• Decrease in percent coverage attributed to fire

Species present at sites did not change with the most dominant species in 2009 most dominant in 2011

Largest decrease: *Hypericum brachyphyllum* (75% 2009 to 2011), *Andropogon* sp. (87% 2009 to 2011)

 Largest Increase: Dichanthelium aciculare and Eustachys sp! (54% 2011 compared to 2009 (not present)), Centella asiatica (50% 2011 compared to 2009)

# Notable Species

1. Muhlenbergia capillaris found at all sites in 2011 and 10 of 11 sites in '09

2. Cladium jamaicense found at all sites in 2011 and 9 of 11 sites in '09

3. Melaleuca quinquenervia found at 4 sites in 2011 and 3 sites in 2009





SOUTH FLORIDA WATER MANAGEMENT DISTRICT

# Next Agenda Topic



### Recommendations/Future Activities Discussion

**GROUP DISCUSSION** 

#### UPDATE (save this slide for detail discussion)

- As with 2009, no living melaleuca trees (*Melaleuca quinquenervia*) were noticeable in either the aerial imagery or field photo transects. These occurrences are isolated, surrounded by healthy wetland species, but will increase in dominance with time.
- Recovery from areas identified as treated melaleuca continues, although significant relic treated melaleuca stands persist. Between 2009 and 2011, there appears to significant increase in shrub species occupying treated areas, particularly wax myrtle (*Myrica cerifera*). A field survey conducted post fire (May 25th, 2011) indicated that these species were only modestly affected by the burns on March 5th, 2011 (Phase II) and April 4, 2011 (Phase I). Plants observed were already showing signs of new growth.
- In Phase I, muhly dominated wet prairie (FLUCFCS 643m) has expanded more than any other community, and is the second largest community behind mixed wet prairie (FLUCFCS 643). The increase in muhly dominated wet prairie is consistent with the 2009 trend. Low density wet prairie (FLUCFCS 643xsl) continues to decrease in areas adjacent recovering wet prairie in treated melaleuca (FLUCFCS 643rm), evolving into denser wet prairie communities. Open areas appear most persistent in wetter areas adjacent to sawgrass (*Cladium jamaicense*) prairie (FLUCFCS 643cs). General patterns of Phase I, however, have not significantly changed.
- As a result of an accidental fire, over 90% of Phase II was burned on May 5th, 2011, with the areas showing greatest effects to be those previously identified as recovering wet prairie in treated melaleuca (FLUCFCS 643rm). This is likely the result of higher fuel loading. The areas unburned were the majority of the tree island (FLUCFCS 617) in the south west corner (burned only around its perimeter) and muhly grass (*Muhlenbergia capillaries*) wet prairie (FLUCFCS 643m) in north east corner.

### **C4 Emergency Detention Basin**

2011 Workshop September 27, 2011

# Recommendations Future Activities DISCUSSION

## **Recommended Changes**

| Current Permit Required<br>Monitoring   |                                                      | Recommended                                                                                                            | Justification                                                                                                                                                                                                                                   |  |  |  |
|-----------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Parameter                               | Frequency                                            | Changes                                                                                                                |                                                                                                                                                                                                                                                 |  |  |  |
| Wildlife                                | Biennial                                             | Drop                                                                                                                   | Wildlife monitoring does not serve the purposes that C4<br>EDB was built and is not needed to evaluate the<br>operational success of the project                                                                                                |  |  |  |
| Water Quality                           | Weekly if Flowing (72 hr<br>response) else Quarterly | Change to biweekly if<br>recorded flow. Change<br>location of sampling station<br>to bridge over C4EDB<br>inflow canal | Gives District greater latitude to respond to the rare flow<br>event while reducing the collection of samples that are<br>not being used for compliance. Station relocation is<br>upstream of both G420 and G422 reducing redundant<br>sampling |  |  |  |
| Periphyton                              | Biennial                                             | Drop                                                                                                                   | Area typically too dry to deploy periphytometers in<br>areas representative of either Phase I or Phase II for the<br>length of time necessary (28 days) to develop a<br>periphyton community on artificial substrate                            |  |  |  |
| Vegetation<br>(intensive)               | Biennial                                             | Drop                                                                                                                   |                                                                                                                                                                                                                                                 |  |  |  |
| Vegetation (routine)<br>groundtruthing) | Biennial                                             | Drop                                                                                                                   | Vegetation monitoring does not serve the purposes th<br>C4 EDB was built and is not needed to evaluate the<br>operational success of the project                                                                                                |  |  |  |
| Aerial Vegetation<br>Surveys            | Biannual                                             | Drop                                                                                                                   |                                                                                                                                                                                                                                                 |  |  |  |
| Reporting                               | Biennial                                             | Report as part of the<br>District's SFER                                                                               |                                                                                                                                                                                                                                                 |  |  |  |
| Workshop                                | Biennial                                             | Drop                                                                                                                   | Including data summaries in the District's SFER report should suffice as the project rarely operates.                                                                                                                                           |  |  |  |

### **C4 Emergency Detention Basin**

2011 Workshop

# Thanks for Attending